咨询与建议

限定检索结果

文献类型

  • 98 篇 会议
  • 58 篇 期刊文献

馆藏范围

  • 156 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 99 篇 工学
    • 46 篇 计算机科学与技术...
    • 43 篇 软件工程
    • 33 篇 控制科学与工程
    • 24 篇 矿业工程
    • 18 篇 机械工程
    • 13 篇 信息与通信工程
    • 12 篇 电气工程
    • 10 篇 冶金工程
    • 10 篇 化学工程与技术
    • 8 篇 仪器科学与技术
    • 8 篇 电子科学与技术(可...
    • 7 篇 材料科学与工程(可...
    • 6 篇 动力工程及工程热...
    • 5 篇 生物工程
    • 4 篇 交通运输工程
    • 2 篇 公安技术
    • 1 篇 建筑学
  • 50 篇 理学
    • 33 篇 数学
    • 19 篇 统计学(可授理学、...
    • 18 篇 系统科学
    • 8 篇 化学
    • 6 篇 物理学
    • 5 篇 生物学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 21 篇 管理学
    • 19 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 3 篇 经济学
    • 3 篇 应用经济学

主题

  • 10 篇 predictive model...
  • 9 篇 accuracy
  • 8 篇 process control
  • 8 篇 feature extracti...
  • 7 篇 stochastic syste...
  • 7 篇 data models
  • 7 篇 training
  • 5 篇 real-time system...
  • 5 篇 adaptation model...
  • 4 篇 minerals
  • 4 篇 simulation
  • 3 篇 learning systems
  • 3 篇 reinforcement le...
  • 3 篇 computational fl...
  • 3 篇 indexes
  • 3 篇 generative adver...
  • 3 篇 force
  • 3 篇 data mining
  • 3 篇 vibrations
  • 3 篇 production

机构

  • 33 篇 state key labora...
  • 29 篇 state key labora...
  • 22 篇 beijing key labo...
  • 15 篇 faculty of infor...
  • 15 篇 college of infor...
  • 9 篇 bgrimm technolog...
  • 8 篇 state key labora...
  • 8 篇 artificial intel...
  • 8 篇 school of inform...
  • 7 篇 state key labora...
  • 7 篇 state key labora...
  • 7 篇 state key labora...
  • 6 篇 state key labora...
  • 6 篇 school of inform...
  • 6 篇 research center ...
  • 5 篇 school of inform...
  • 5 篇 the state key la...
  • 4 篇 bgrimm technolog...
  • 4 篇 tsinghua univers...
  • 4 篇 bgrimm technolog...

作者

  • 16 篇 wang dianhui
  • 12 篇 qingkai wang
  • 11 篇 fuli wang
  • 10 篇 kang li
  • 9 篇 jian tang
  • 9 篇 junwu zhou
  • 9 篇 gang yu
  • 8 篇 fei chu
  • 8 篇 guobin zou
  • 7 篇 dang gang
  • 7 篇 yu gang
  • 6 篇 wei dai
  • 6 篇 dai wei
  • 6 篇 tao song
  • 6 篇 tang jian
  • 6 篇 jianjun zhao
  • 6 篇 jian zhang
  • 5 篇 yin fengfeng
  • 5 篇 wang qingkai
  • 5 篇 sun kai

语言

  • 146 篇 英文
  • 7 篇 其他
  • 3 篇 中文
检索条件"机构=State Key Laboratory of Process Automation in Mining and Metallurgy"
156 条 记 录,以下是71-80 订阅
排序:
Recurrent Stochastic Configuration Networks for Temporal Data Analytics
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Dianhui Dang, Gang State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China Research Center for Stochastic Configuration Machines China University of Mining and Technology Xuzhou221116 China
Temporal data modelling techniques with neural networks are useful in many domain applications. This paper aims at developing a recurrent version of stochastic configuration networks (RSCNs) for problem solving, where... 详细信息
来源: 评论
Recurrent Stochastic Configuration Networks with Incremental Blocks
arXiv
收藏 引用
arXiv 2024年
作者: Dang, Gang Wang, Dianhui State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China Research Center for Stochastic Configuration Machines China University of Mining and Technology Xuzhou221116 China
Recurrent stochastic configuration networks (RSCNs) have shown promise in modelling nonlinear dynamic systems with order uncertainty due to their advantages of easy implementation, less human intervention, and strong ... 详细信息
来源: 评论
Self-Organizing Recurrent Stochastic Configuration Networks for Nonstationary Data Modelling
arXiv
收藏 引用
arXiv 2024年
作者: Dang, Gang Wang, Dianhui State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China Research Center for Stochastic Configuration Machines China University of Mining and Technology Xuzhou221116 China
Recurrent stochastic configuration networks (RSCNs) are a class of randomized learner models that have shown promise in modelling nonlinear dynamics. In many fields, however, the data generated by industry systems oft... 详细信息
来源: 评论
Deep Recurrent Stochastic Configuration Networks for Modelling Nonlinear Dynamic Systems
arXiv
收藏 引用
arXiv 2024年
作者: Dang, Gang Wang, Dianhui State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China Research Center for Stochastic Configuration Machines China University of Mining and Technology Xuzhou221116 China
Deep learning techniques have shown promise in many domain applications. This paper proposes a novel deep reservoir computing framework, termed deep recurrent stochastic configuration network (DeepRSCN) for modelling ... 详细信息
来源: 评论
Recurrent Stochastic Configuration Networks with Hybrid Regularization for Nonlinear Dynamics Modelling
arXiv
收藏 引用
arXiv 2024年
作者: Dang, Gang Wang, Dianhui State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China Research Center for Stochastic Configuration Machines China University of Mining and Technology Xuzhou221116 China
Recurrent stochastic configuration networks (RSCNs) have shown great potential in modelling nonlinear dynamic systems with uncertainties. This paper presents an RSCN with hybrid regularization to enhance both the lear... 详细信息
来源: 评论
Fuzzy Recurrent Stochastic Configuration Networks for Industrial Data Analytics
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Dianhui Dang, Gang State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China Research Center for Stochastic Configuration Machines China University of Mining and Technology Xuzhou221116 China
This paper presents a novel neuro-fuzzy model, termed fuzzy recurrent stochastic configuration networks (F-RSCNs), for industrial data analytics. Unlike the original recurrent stochastic configuration network (RSCN), ... 详细信息
来源: 评论
Collaboration Energy Efficiency with Mobile Edge Computing for Target Tracking in IoT  7th
Collaboration Energy Efficiency with Mobile Edge Computing f...
收藏 引用
7th International Conference on Artificial Intelligence and Security, ICAIS 2021
作者: Zou, Guobin Yu, Gang Zhang, Jian Tang, Jian Zhou, Junwu College of Information Science and Engineering Northeastern University Shenyang110819 China State Key Laboratory of Process Automation in Mining and Metallurgy Beijing102600 China School of Computer and Software Nanjing University of Information Science and Technology Nanjing210044 China Faculty of Information Technology Beijing University of Technology Beijing100024 China Beijing Key Laboratory of Process Automation in Mining and Metallurgy Beijing102600 China BGRIMM Technology Group Co. Ltd. Beijing102600 China
In this paper, the target tracking problem is investigated with mobile edge computing (MEC) mechanism in internet of things (IoT), where the challenge of energy efficiency is a significant issue when the target tracki... 详细信息
来源: 评论
Collaboration Energy Efficiency with Mobile Edge Computing for Data Collection in IoT  7th
Collaboration Energy Efficiency with Mobile Edge Computing f...
收藏 引用
7th International Conference on Artificial Intelligence and Security, ICAIS 2021
作者: Zou, Guobin Zhang, Jian Tang, Jian Zhou, Junwu College of Information Science and Engineering Northeastern University Shenyang110819 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing102600 China School of Computer and Software Nanjing University of Information Science & Technology Nanjing210044 China Faculty of Information Technology Beijing University of Technology Beijing100024 China Beijing Key Laboratory of Process Automation in Mining & Metallurgy Beijing102600 China BGRIMM Technology Group Co. Ltd. Beijing102600 China
In this paper, we investigated collaboration energy efficiency with mobile edge computing (MEC) mechanism in internet of things (IoT), which is a challenge issue. In order to prolong the lifetime of IoT, we adopt dyna... 详细信息
来源: 评论
Grade Monitoring using Semantic Features of Flotation Froth Image
Grade Monitoring using Semantic Features of Flotation Froth ...
收藏 引用
Chinese Control and Decision Conference, CCDC
作者: Xu Wang Jingmin Lian Daoxi Liu Yutian Lei School of Information Science and Engineering Northeastern University Shenyang China BGRIMM Technology Group Beijing China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing China
In the industrial flotation circuits, grades are the key performance indicators for flotation condition recognition and operations. Modeling based on machine vision is an effective tool for grade monitoring, and froth... 详细信息
来源: 评论
Adaptive Dynamic Programming and Decentralized Optimal Output Regulation of Two-Time-Scale Interconnected Systems
Adaptive Dynamic Programming and Decentralized Optimal Outpu...
收藏 引用
International Conference on Control, automation and Information Sciences (ICCAIS)
作者: Jianguo Zhao Chunyu Yang Linna Zhou Weinan Gao School of Information and Control Engineering China University of Mining and Technology Xuzhou China State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang China
In this paper, we address the decentralized optimal output regulation problem for two-time-scale (TTS) interconnected systems with unknown slow dynamics through adaptive dynamic programming (ADP). Firstly, singular pe...
来源: 评论