咨询与建议

限定检索结果

文献类型

  • 79 篇 会议
  • 21 篇 期刊文献

馆藏范围

  • 100 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 56 篇 工学
    • 27 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 17 篇 控制科学与工程
    • 16 篇 矿业工程
    • 12 篇 机械工程
    • 11 篇 信息与通信工程
    • 9 篇 仪器科学与技术
    • 7 篇 冶金工程
    • 6 篇 动力工程及工程热...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 电气工程
    • 4 篇 交通运输工程
    • 2 篇 生物工程
    • 2 篇 公安技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 石油与天然气工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 25 篇 理学
    • 13 篇 数学
    • 8 篇 化学
    • 4 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 3 篇 系统科学
    • 2 篇 生物学
    • 1 篇 大气科学
    • 1 篇 地质学
  • 15 篇 管理学
    • 15 篇 管理科学与工程(可...
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 8 篇 feature extracti...
  • 7 篇 process control
  • 7 篇 predictive model...
  • 6 篇 accuracy
  • 5 篇 data models
  • 5 篇 training
  • 4 篇 minerals
  • 4 篇 real-time system...
  • 3 篇 indexes
  • 3 篇 generative adver...
  • 3 篇 vibrations
  • 3 篇 production
  • 3 篇 correlation coef...
  • 3 篇 image recognitio...
  • 3 篇 adaptation model...
  • 2 篇 regularization p...
  • 2 篇 employee welfare
  • 2 篇 deep learning
  • 2 篇 simulation
  • 2 篇 svm

机构

  • 33 篇 state key labora...
  • 21 篇 beijing key labo...
  • 15 篇 faculty of infor...
  • 14 篇 college of infor...
  • 7 篇 bgrimm technolog...
  • 7 篇 state key labora...
  • 7 篇 state key labora...
  • 5 篇 state key labora...
  • 5 篇 school of inform...
  • 4 篇 bgrimm technolog...
  • 4 篇 bgrimm technolog...
  • 4 篇 state key labora...
  • 4 篇 beijing key labo...
  • 4 篇 state key labora...
  • 4 篇 school of electr...
  • 4 篇 beijing key labo...
  • 4 篇 college of medic...
  • 4 篇 zijin zhixintech...
  • 4 篇 school of busine...
  • 4 篇 college of compu...

作者

  • 11 篇 qingkai wang
  • 9 篇 kang li
  • 9 篇 gang yu
  • 8 篇 jian tang
  • 8 篇 junwu zhou
  • 7 篇 fuli wang
  • 7 篇 yu gang
  • 7 篇 guobin zou
  • 6 篇 tang jian
  • 6 篇 jian zhang
  • 5 篇 yin fengfeng
  • 5 篇 sun kai
  • 5 篇 jianjun zhao
  • 5 篇 zhang jian
  • 5 篇 huangang wang
  • 4 篇 wang qingkai
  • 4 篇 lvqing yang
  • 4 篇 xiaobin li
  • 4 篇 bo yu
  • 4 篇 tao song

语言

  • 92 篇 英文
  • 8 篇 其他
检索条件"机构=State Key Laboratory of Process Automation in Mining and Metallurgy Ganization"
100 条 记 录,以下是81-90 订阅
排序:
Multivariate Molten Iron Quality Modeling Based on Improved Incremental Random Vector Functional-link Networks
收藏 引用
IFAC-PapersOnLine 2018年 第21期51卷 290-294页
作者: Jiang, Y. Zhou, P. Yu, G. The State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang110819 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing102628 China Beijing Key Laboratory of Process Automation in Mining & Metallurgy Beijing102628 China
Aiming at the problems that the model structure is complex and the training time is too long for traditional incremental random vector functional-link networks (I-RVFLNs), this paper proposes an improved incremental r... 详细信息
来源: 评论
A time-delay analysis method for the variables of grinding process
收藏 引用
IFAC-PapersOnLine 2018年 第21期51卷 88-93页
作者: Yu, Gang Zhou, Junwu Wang, Qingkai Zhao, Jianjun Department of IT & Automation BGRIMM Technology Group Beijing102600 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing102600 China Beijing Key Laboratory of Automation of Mining and Metallurgy Process Beijing102600 China
Data based expert knowledge mining is very important for intelligent and optimal grinding process control. However, the original process data includes noise, and there is a certain time delay between the variables of ... 详细信息
来源: 评论
Combining Active Learning and Fisher Discriminant Analysis for the Semi-supervised process Monitoring
收藏 引用
IFAC-PapersOnLine 2018年 第21期51卷 147-151页
作者: Yin, Lili Wang, Huangang Fan, Wenhui Zhou, Junwu Yu, Gang Department of Automation Tsinghua University Beijing100084 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing102600 China Beijing Key Laboratory of Automation of Mining and Metallurgy Process Beijing102600 China
Fault detection and fault classification are two extremely important parts in process monitoring. However, obtaining the true labels of the industrial data is often time-consuming and expensive in practice, which brin... 详细信息
来源: 评论
Selective Ensemble Least Square Support Vector Machine with Its Application
收藏 引用
IFAC-PapersOnLine 2018年 第18期51卷 631-636页
作者: Tang, J. Qiao, J.F. Liu, Z. Wu, Z.W. Zhou, X.J. Yu, G. Zhao, J.J. Faculty of Information Technology Beijing University of Technology Beijing China State Key Laboratory of Synthetical Automation for Process Industries Northeaster University Shenyang110004 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing China Beijing Key Laboratory of Process Automation in Mining & Metallurgy Beijing China
Kernel-based modeling methods have been used widely to estimate some difficulty-to-measure quality or efficient indices at different industrial applications. Least square support vector machine (LSSVM) is one of the p... 详细信息
来源: 评论
Mill Load Parameter Forecasting Based on Multi-source Single-scale Mechanical Frequency Spectral Multiple feature Subsets
收藏 引用
IFAC-PapersOnLine 2018年 第21期51卷 53-58页
作者: Tang, J. Qiao, J.F. Liu, Z. Zhou, Z.X.J. Yu, G. Zhao, J.J. Faculty of Information Technology Beijing University of Technology Beijing China State Key Laboratory of Synthetical Automation for Process Industries Northeaster University Shenyang110004 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing China Beijing Key Laboratory of Process Automation in Mining & Metallurgy Beijing China
Multi-source mechanical signals at different locations of the ball mill system have different contributions for constructing mill load parameter forecasting (MLPF) model. It is necessary to select suitable multi-sourc... 详细信息
来源: 评论
process Modelling and Univariate Analysis of Comminution Circuits
收藏 引用
IFAC-PapersOnLine 2018年 第21期51卷 19-23页
作者: Song, T. Yang, T.H. Zhou, J.W. Wang, Q.K. BGRIMM Technology Group Beijing100160 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing100160 China Beijing Key Laboratory of Process Automation in Mining & Metallurgy Beijing100160 China
BGRIMM Technology Group developed a process simulation software to mass balance, model fit and simulate crushing, grinding and classification circuits. This paper presents the structure and some modelling method detai... 详细信息
来源: 评论
Estimation of copper concentrate grade for copper flotation
收藏 引用
IFAC-PapersOnLine 2018年 第21期51卷 94-98页
作者: Yan, Hao Wang, Qingkai Wang, Zhiqiang Wang, Xu Yu, Feng College of Information Science and Engineering Northeastern University Shenyang110819 China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing102600 China Beijing Key Laboratory of Automation of Mining and Metallurgy Process Beijing102600 China
This paper develops a comparative study based on several modeling methods for estimating the copper concentrate grade in the copper flotation process. Back propagation neural network (BPNN) method, partial least squar... 详细信息
来源: 评论
Single-mode Sub-signal Selection Method Based on VMD and Predic Performance for Multi-component Mechanical Signal  39
Single-mode Sub-signal Selection Method Based on VMD and Pre...
收藏 引用
39th Chinese Control Conference, CCC 2020
作者: Tang, Jian Zhu, Hongjuan Li, Dong Zhang, Jian Yu, Gang Beijing University of Technology Faculty of Information Technology Beijing100124 China Pla Navy Beijing100129 China Joint Staff of the Central Military Commission 55th Institute Beijing100128 China Nanjing University of Information Science and Technology College of Computer and Software Nanjing210044 China State Beijing Key Laboratory of Process Automation in Mining Metallurgy Beijing100160 China
The mapping relationship between the mill load and the multi-component mechanical signals generated by the ball mill of the mineral grinding process is non-deterministic and complex. With the inherent filtering functi... 详细信息
来源: 评论
Operating performance assessment for industrial process with hybrid qualitative and quantitative information using modified fuzzy probabilistic rough set
Operating performance assessment for industrial process with...
收藏 引用
Chinese automation Congress (CAC)
作者: Xiaoyu Zou Fuli Wang Yuqing Chang Jie Pan School of Mechatronic Engineering China University of Mining and Technology Xuzhou China State Key Laboratory of Process Automation in Mining & Metallurgy Beijing China College of Information Science & Engineering Northeastern University Shenyang China School of Information and Control Engineering Xuzhou China
Since satisfactory operating performance helps guarantee high comprehensive economic benefit under normal working condition for industrial processes, it is crucial to conduct accurate performance assessment on the deg... 详细信息
来源: 评论
Single-mode Sub-signal Selection Method Based on VMD and Prediction Performance for Multi-component Mechanical Signal
Single-mode Sub-signal Selection Method Based on VMD and Pre...
收藏 引用
第三十九届中国控制会议
作者: Jian Tang Hongjuan Zhu Dong Li Jian Zhang Gang Yu Faculty of Information Technology Beijing University of Technology PLA Navy 55th Institute Joint staff of the Central Military Commission College of computer and software Nanjing University of Information Science and Technology State (Beijing) Key Laboratory of Process Automation in Mining & Metallurgy
The mapping relationship between the mill load and the multi-component mechanical signals generated by the ball mill of the mineral grinding process is non-deterministic and complex. With the inherent filtering functi... 详细信息
来源: 评论