In this paper, we investigate the quadratic approximation methods. After studying the basic idea of simplex methods, we construct several new search directions by combining the local information progressively obtained...
详细信息
In this paper, we investigate the quadratic approximation methods. After studying the basic idea of simplex methods, we construct several new search directions by combining the local information progressively obtained during the iterates of the algorithm to form new subspaces. And the quadratic model is solved in the new subspaces. The motivation is to use the information disclosed by the former steps to construct more promising directions. For most tested problems, the number of functions evaluations have been reduced obviously through our algorithms.
In this paper,based on the multi-symplecticity of concatenating symplectic Runge-Kutta-Nystrom(SRKN)methods and symplectic Runge-Kutta-type methods for numerically solving Hamiltonian PDEs,explicit multi-symplectic sc...
详细信息
In this paper,based on the multi-symplecticity of concatenating symplectic Runge-Kutta-Nystrom(SRKN)methods and symplectic Runge-Kutta-type methods for numerically solving Hamiltonian PDEs,explicit multi-symplectic schemes are constructed and investigated,where the nonlinear wave equation is taken as a model *** comparisons are made to illustrate the effectiveness of our newly derived explicit multi-symplectic integrators.
For large sparse system of linear equations with a non-Hermitian positive definite coefficient matrix, we review the recently developed Hermitian/skew-Hermitian splitting (HSS) iteration, normal/skew-Hermitian splitti...
详细信息
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-...
详细信息
In this paper Mei symmetry is introduced for a nonconservative system. The necessary and sufficient condition for a Mei symmetry to be also a Lie symmetry is derived. It is proved that the Mei symmetry leads to a non-Noether conservative quantity via a Lie symmetry, and deduces a Lutzky conservative quantity via a Lie point symmetry.
This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. T...
详细信息
This paper presents a discrete vaxiational principle and a method to build first-integrals for finite dimensional Lagrange-Maxwell mechanico-electrical systems with nonconservative forces and a dissipation function. The discrete variational principle and the corresponding Euler-Lagrange equations are derived from a discrete action associated to these systems. The first-integrals are obtained by introducing the infinitesimal transformation with respect to the generalized coordinates and electric quantities of the systems. This work also extends discrete Noether symmetries to mechanico-electrical dynamical systems. A practical example is presented to illustrate the results.
Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by exp...
详细信息
Inspired by the success of the projected Barzilai-Borwein (PBB) method for largescale box-constrained quadratic programming, we propose and analyze the monotone projected gradient methods in this paper. We show by experiments and analyses that for the new methods,it is generally a bad option to compute steplengths based on the negative gradients. Thus in our algorithms, some continuous or discontinuous projected gradients are used instead to compute the steplengths. Numerical experiments on a wide variety of test problems are presented, indicating that the new methods usually outperform the PBB method.
The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, ...
详细信息
The (3+1)-dimensional Jimbo-Miwa (JM) equation is solved approximately by using the conformal invariant asymptotic expansion approach presented by Ruan. By solving the new (3+1)-dimensional integrable models, which are conformal invariant and possess Painlevé property, the approximate solutions are obtained for the JM equation, containing not only one-soliton solutions but also periodic solutions and multi-soliton solutions. Some approximate solutions happen to be exact and some approximate solutions can become exact by choosing relations between the parameters properly.
A stationary convection-diffusion problem with a small parameter multiplying the highest derivative is considered. The problem is discretized on a uniform rectangular grid by the central-difference scheme. A new class...
详细信息
暂无评论