咨询与建议

限定检索结果

文献类型

  • 316 篇 会议
  • 202 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 519 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 339 篇 工学
    • 211 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 72 篇 控制科学与工程
    • 69 篇 机械工程
    • 49 篇 信息与通信工程
    • 42 篇 光学工程
    • 42 篇 生物工程
    • 31 篇 仪器科学与技术
    • 22 篇 生物医学工程(可授...
    • 21 篇 化学工程与技术
    • 17 篇 电气工程
    • 17 篇 航空宇航科学与技...
    • 16 篇 建筑学
    • 14 篇 力学(可授工学、理...
    • 13 篇 土木工程
    • 12 篇 电子科学与技术(可...
    • 8 篇 材料科学与工程(可...
    • 8 篇 动力工程及工程热...
  • 146 篇 理学
    • 60 篇 数学
    • 46 篇 物理学
    • 45 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 15 篇 化学
    • 9 篇 系统科学
  • 65 篇 管理学
    • 48 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 22 篇 医学
    • 19 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
  • 4 篇 经济学
  • 4 篇 法学
  • 4 篇 教育学
  • 4 篇 农学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 20 篇 training
  • 19 篇 three-dimensiona...
  • 18 篇 virtual reality
  • 18 篇 solid modeling
  • 15 篇 semantics
  • 14 篇 object detection
  • 13 篇 feature extracti...
  • 12 篇 computational mo...
  • 11 篇 deep learning
  • 11 篇 convolution
  • 9 篇 semantic segment...
  • 9 篇 image segmentati...
  • 8 篇 optimization
  • 8 篇 visualization
  • 8 篇 machine learning
  • 8 篇 joints
  • 8 篇 pose estimation
  • 7 篇 rendering (compu...
  • 7 篇 cameras
  • 7 篇 fingers

机构

  • 201 篇 state key labora...
  • 68 篇 state key labora...
  • 58 篇 hangzhou innovat...
  • 43 篇 zhongguancun lab...
  • 27 篇 peng cheng labor...
  • 18 篇 zhengzhou univer...
  • 18 篇 beihang universi...
  • 15 篇 school of comput...
  • 14 篇 state key labora...
  • 13 篇 state key labora...
  • 13 篇 beihang universi...
  • 12 篇 state key labora...
  • 12 篇 the state key la...
  • 11 篇 institute of art...
  • 10 篇 the state key la...
  • 10 篇 qingdao research...
  • 10 篇 state key labora...
  • 10 篇 jiangxi research...
  • 9 篇 school of new me...
  • 9 篇 international re...

作者

  • 44 篇 wang yunhong
  • 43 篇 liu qingjie
  • 27 篇 jianwei niu
  • 20 篇 yue qi
  • 18 篇 li jia
  • 16 篇 yunhong wang
  • 15 篇 qingjie liu
  • 13 篇 yuru zhang
  • 12 篇 niu jianwei
  • 12 篇 aimin hao
  • 12 篇 tao ren
  • 12 篇 qi yue
  • 11 篇 xuefeng liu
  • 11 篇 shuai li
  • 11 篇 haibin duan
  • 10 篇 jin xiao
  • 10 篇 hao aimin
  • 10 篇 xiaoguang hu
  • 9 篇 fu zehua
  • 9 篇 hu hai-miao

语言

  • 484 篇 英文
  • 29 篇 其他
  • 7 篇 中文
检索条件"机构=State Key Laboratory of Virtual Reality Technology and Systems Robotics Institute"
519 条 记 录,以下是141-150 订阅
排序:
Load-Aware Hierarchical Information-Centric Routing for Large-Scale LEO Satellite Networks
Load-Aware Hierarchical Information-Centric Routing for Larg...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Fei Yan Zhiyuan Wang Shan Zhang Qingkai Meng Hongbin Luo School of Computer Science and Engineering Beihang University Beijing China Zhongguancun Laboratory Beijing China State Key Laboratory of Virtual Reality Technology and Systems Beijing China State Key Laboratory of Software Development Environment Beijing China Institute of Artificial Intelligence Beihang University Beijing China
The emerging large-scale low earth orbit (LEO) constellation is expected to provide global Internet services. However, large-scale satellite networks meet the challenges of topology dynamics and continuous traffic var... 详细信息
来源: 评论
GeoBEV: Learning Geometric BEV Representation for Multi-view 3D Object Detection  39
GeoBEV: Learning Geometric BEV Representation for Multi-view...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Zhang, Jinqing Zhang, Yanan Qi, Yunlong Fu, Zehua Liu, Qingjie Wang, Yunhong State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Beijing Jingwei Hirain Technologies Co. Inc. China Hangzhou Innovation Institute Beihang University Hangzhou China Zhongguancun Laboratory Beijing China
Bird’s-Eye-View (BEV) representation has emerged as a mainstream paradigm for multi-view 3D object detection, demonstrating impressive perceptual capabilities. However, existing methods overlook the geometric quality... 详细信息
来源: 评论
PACF: Prototype Augmented Compact Features for Improving Domain Adaptive Object Detection
arXiv
收藏 引用
arXiv 2025年
作者: Liu, Chenguang Feng, Yongchao Zhang, Yanan Liu, Qingjie Wang, Yunhong State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing100191 China School of Computer Science and Information Engineering Hefei University of Technology Hefei230601 China Hangzhou Innovation Institute Beihang University Hangzhou310051 China
In recent years, there has been significant advancement in object detection. However, applying off-the-shelf detectors to a new domain leads to significant performance drop, caused by the domain gap. These detectors e... 详细信息
来源: 评论
Scaffold-BPE: Enhancing Byte Pair Encoding for Large Language Models with Simple and Effective Scaffold Token Removal  39
Scaffold-BPE: Enhancing Byte Pair Encoding for Large Languag...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Lian, Haoran Xiong, Yizhe Niu, Jianwei Mo, Shasha Su, Zhenpeng Lin, Zijia Chen, Hui Han, Jungong Ding, Guiguang Beihang University China Tsinghua University China BNRist China State Key Laboratory of Virtual Reality Technology and Systems Beihang University China Zhongguancun Laboratory China Zhengzhou University Research Institute of Industrial Technology Zhengzhou University China Chinese Academy of Sciences China
Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadverte... 详细信息
来源: 评论
YOLC: You Only Look Clusters for Tiny Object Detection in Aerial Images
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Chenguang Gao, Guangshuai Huang, Ziyue Hu, Zhenghui Liu, Qingjie Wang, Yunhong The State Key Laboratory of Virtual Reality Technology and Systems Beihang University Haidian Beijing100191 China The Hangzhou Innovation Institute Beihang University Hangzhou310051 China The School of Electronics and Information Zhongyuan University of Technology Zhengzhou450007 China
Detecting objects from aerial images poses significant challenges due to the following factors: 1) Aerial images typically have very large sizes, generally with millions or even hundreds of millions of pixels, while c... 详细信息
来源: 评论
One-Shot Neural Band Selection for Spectral Recovery
One-Shot Neural Band Selection for Spectral Recovery
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Hai-Miao Hu Zhenbo Xu Wenshuai Xu You Song YiTao Zhang Liu Liu Zhilin Han Ajin Meng Hangzhou Innovation Institute Beihang University Hangzhou China State Key Laboratory of Virtual Reality Technology and Systems Beihang University School of Software Beihang University ShiFang Technology Inc Hangzhou China
Band selection has a great impact on the spectral recovery quality. To solve this ill-posed inverse problem, most band selection methods adopt hand-crafted priors or exploit clustering or sparse regularization constra... 详细信息
来源: 评论
Disentangling Local and Global Information for Light Field Depth Estimation
Disentangling Local and Global Information for Light Field D...
收藏 引用
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Yang, Xueting Deng, Junli Chen, Rongshan Cong, Ruixuan Ke, Wei Sheng, Hao Communication University of China School of Information and Communication Engineering Beijing100024 China Beihang University State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beijing100191 China Beihang Hangzhou Innovation Institute Yuhang Xixi Octagon City Hangzhou310023 China Macao Polytechnic University Faculty of Applied Sciences 999078 China
Accurate depth estimation from light field images is essential for various applications. Deep learning-based techniques have shown great potential in addressing this problem while still face challenges such as sensiti... 详细信息
来源: 评论
Generic Knowledge Boosted Pre-training For Remote Sensing Images
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Ziyue Zhang, Mingming Gong, Yuan Liu, Qingjie Wang, Yunhong State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing100191 China Hangzhou Innovation Institute Beihang University Hangzhou310051 China School of Software and Microelectronics Peking University Beijing100871 China
—Deep learning models are essential for scene classification, change detection, land cover segmentation, and other remote sensing image understanding tasks. Most backbones of existing remote sensing deep learning mod... 详细信息
来源: 评论
GeoBEV: Learning Geometric BEV Representation for Multi-view 3D Object Detection
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Jinqing Zhang, Yanan Qi, Yunlong Fu, Zehua Liu, Qingjie Wang, Yunhong State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Beijing Jingwei Hirain Technologies Co. Inc. China Hangzhou Innovation Institute Beihang University Hangzhou China Zhongguancun Laboratory Beijing China
Bird’s-Eye-View (BEV) representation has emerged as a mainstream paradigm for multi-view 3D object detection, demonstrating impressive perceptual capabilities. However, existing methods overlook the geometric quality... 详细信息
来源: 评论
UNeLF: Unconstrained Neural Light Field for Self-Supervised Angular Super-Resolution
收藏 引用
IEEE Transactions on Circuits and systems for Video technology 2025年
作者: Zhao, Mingyuan Sheng, Hao Chen, Rongshan Cong, Ruixuan Cui, Zhenglong Yang, Da Beihang University State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beijing100191 China Beihang University Data Science and Intelligent Computing Laboratory Hangzhou International Innovation Institute Hangzhou311115 China Macao Polytechnic University Faculty of Applied Sciences 999078 China
Compared to supervised learning methods, self-supervised learning methods address the domain gap problem between light field (LF) datasets collected under varying acquisition conditions, which typically leads to decre... 详细信息
来源: 评论