咨询与建议

限定检索结果

文献类型

  • 307 篇 会议
  • 196 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 328 篇 工学
    • 203 篇 计算机科学与技术...
    • 186 篇 软件工程
    • 68 篇 机械工程
    • 63 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 42 篇 生物工程
    • 41 篇 光学工程
    • 31 篇 仪器科学与技术
    • 22 篇 生物医学工程(可授...
    • 20 篇 化学工程与技术
    • 17 篇 电气工程
    • 16 篇 建筑学
    • 16 篇 航空宇航科学与技...
    • 14 篇 力学(可授工学、理...
    • 13 篇 土木工程
    • 12 篇 电子科学与技术(可...
    • 8 篇 材料科学与工程(可...
    • 7 篇 动力工程及工程热...
  • 145 篇 理学
    • 60 篇 数学
    • 46 篇 物理学
    • 44 篇 生物学
    • 17 篇 统计学(可授理学、...
    • 15 篇 化学
    • 9 篇 系统科学
  • 65 篇 管理学
    • 48 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 21 篇 医学
    • 19 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 13 篇 药学(可授医学、理...
  • 4 篇 经济学
  • 4 篇 法学
  • 4 篇 教育学
  • 4 篇 农学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 20 篇 training
  • 19 篇 three-dimensiona...
  • 18 篇 solid modeling
  • 17 篇 virtual reality
  • 15 篇 semantics
  • 14 篇 object detection
  • 13 篇 feature extracti...
  • 12 篇 computational mo...
  • 11 篇 convolution
  • 10 篇 deep learning
  • 9 篇 semantic segment...
  • 9 篇 image segmentati...
  • 8 篇 optimization
  • 8 篇 visualization
  • 8 篇 machine learning
  • 8 篇 joints
  • 8 篇 pose estimation
  • 7 篇 rendering (compu...
  • 7 篇 cameras
  • 7 篇 fingers

机构

  • 193 篇 state key labora...
  • 66 篇 state key labora...
  • 55 篇 hangzhou innovat...
  • 39 篇 zhongguancun lab...
  • 27 篇 peng cheng labor...
  • 18 篇 zhengzhou univer...
  • 18 篇 beihang universi...
  • 14 篇 state key labora...
  • 13 篇 state key labora...
  • 13 篇 beihang universi...
  • 12 篇 school of comput...
  • 12 篇 state key labora...
  • 12 篇 the state key la...
  • 10 篇 the state key la...
  • 10 篇 institute of art...
  • 10 篇 qingdao research...
  • 10 篇 state key labora...
  • 10 篇 jiangxi research...
  • 9 篇 school of new me...
  • 9 篇 international re...

作者

  • 41 篇 wang yunhong
  • 41 篇 liu qingjie
  • 27 篇 jianwei niu
  • 20 篇 yue qi
  • 17 篇 li jia
  • 16 篇 yunhong wang
  • 15 篇 qingjie liu
  • 13 篇 yuru zhang
  • 12 篇 aimin hao
  • 12 篇 tao ren
  • 12 篇 qi yue
  • 11 篇 xuefeng liu
  • 11 篇 shuai li
  • 11 篇 haibin duan
  • 10 篇 niu jianwei
  • 10 篇 jin xiao
  • 10 篇 xiaoguang hu
  • 9 篇 jiting li
  • 9 篇 hao aimin
  • 8 篇 fu zehua

语言

  • 488 篇 英文
  • 10 篇 其他
  • 7 篇 中文
检索条件"机构=State Key Laboratory of Virtual Reality Technology and Systems Robotics Institute"
504 条 记 录,以下是201-210 订阅
排序:
Enabling Communication-Efficient Federated Learning via Distributed Compressed Sensing
Enabling Communication-Efficient Federated Learning via Dist...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Yixuan Guan Xuefeng Liu Tao Ren Jianwei Niu State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China Zhongguancun Laboratory Beijing China Laboratory for Internet Software Technologies Institute of Software Chinese Academy of Sciences Beijing China Zhengzhou University Research Institute of Industrial Technology School of Information Engineering Zhengzhou University Zhengzhou China
Federated learning (FL) trains a shared global model by periodically aggregating gradients from local devices. Communication overhead becomes a principal bottleneck in FL since participating devices usually suffer fro...
来源: 评论
FEAT: Towards Fast Environment-Adaptive Task Offloading and Power Allocation in MEC
FEAT: Towards Fast Environment-Adaptive Task Offloading and ...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Tao Ren Zheyuan Hu Hang He Jianwei Niu Xuefeng Liu Laboratory for Internet Software Technologies Institute of Software Chinese Academy of Sciences Beijing China State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China Zhongguancun Laboratory Beijing China Zhengzhou University Research Institute of Industrial Technology School of Information Engineering Zhengzhou University Zhengzhou China
Mobile edge computing (MEC) has been proposed to provide mobile devices with both satisfactory computing resources and latency. key issues in MEC include task offloading and power allocation (TOPA), for which deep rei...
来源: 评论
Modiff: Action-Conditioned 3D Motion Generation with Denoising Diffusion Probabilistic Models
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Mengyi Liu, Mengyuan Ren, Bin Dai, Shuling Sebe, Nicu The State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing100191 China The School of Intelligent Systems Engineering Sun Yatsen University Shenzhen510275 China Guangdong Provincial Key Laboratory of Fire Science and Technology Guanzhou510006 China University of Pisa University of Trento Italy Jiangxi Research Institute Beihang University China University of Trento Trento Italy
Diffusion-based generative models have recently emerged as powerful solutions for high-quality synthesis in multiple domains. Leveraging the bidirectional Markov chains, diffusion probabilistic models generate samples... 详细信息
来源: 评论
Layout-Bridging Text-to-Image Synthesis
arXiv
收藏 引用
arXiv 2022年
作者: Liang, Jiadong Pei, Wenjie Lu, Feng The State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing100191 China The Department of Computer Science Harbin Institute of Technology at Shenzhen Shenzhen518057 China
The crux of text-to-image synthesis stems from the difficulty of preserving the cross-modality semantic consistency between the input text and the synthesized image. Typical methods, which seek to model the text-to-im... 详细信息
来源: 评论
Fast Robot Hierarchical Exploration Based on Deep Reinforcement Learning
Fast Robot Hierarchical Exploration Based on Deep Reinforcem...
收藏 引用
International Wireless Communications and Mobile Computing Conference, IWCMC
作者: Shun Zuo Jianwei Niu Lu Ren Zhenchao Ouyang State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC) Beihang University Beijing China Beihang Hangzhou Innovation Institute Yuhang Beihang University Beijing China
This paper investigates the use of reinforcement learning for autonomous exploration in an unknown environment. Autonomous exploration is crucial in many situations, such as urban search, security inspection, environm...
来源: 评论
Task Assignment of Unmanned Platform Cluster Considering Special state
Task Assignment of Unmanned Platform Cluster Considering Spe...
收藏 引用
IEEE Conference on Industrial Electronics and Applications (ICIEA)
作者: Jiacheng Jiang Jin Xiao Xiaoguang Hu Lei Liu Fei Long State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Beijing Electromechanical Institute Beijing China State Grid Jibei Electric Power Co. Ltd Beijing China
This paper addresses the task assignment problem of unmanned platform with the special states, where the special state can be parts damage, insufficient power, insufficient ammunition, etc. To be specific, when the un... 详细信息
来源: 评论
Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration
Bold but Cautious: Unlocking the Potential of Personalized F...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Xinghao Wu Xuefeng Liu Jianwei Niu Guogang Zhu Shaojie Tang State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China Zhongguancun Laboratory Beijing China Zhengzhou University Research Institute of Industrial Technology School of Information Engineering Zhengzhou University Zhengzhou China Jindal School of Management University of Texas at Dallas USA
Personalized federated learning (PFL) reduces the impact of non-independent and identically distributed (non-IID) data among clients by allowing each client to train a personalized model when collaborating with others...
来源: 评论
Double-Blinded Finder: A Two-Side Privacy-Preserving Approach for Finding Missing Children  3rd
Double-Blinded Finder: A Two-Side Privacy-Preserving Approac...
收藏 引用
3rd EAI International Conference on Robotic Sensor Networks, ROSENET 2019
作者: Jin, Xin Ge, Shiming Song, Chenggen Li, Xiaodong Lei, Jicheng Wu, Chuanqiang Yu, Haoyang Beijing Electronic Science and Technology Institute Beijing China State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Institute of Information Engineering Chinese Academy of Sciences Beijing China OracleChain Technology Beijing China CETC Big Data Research Institute Co. Ltd. Guizhou China
Posting photos of suspected missing children on the street and posting them to social networks can help find missing children, but posting them to the Internet without protection may create privacy issues. In order to... 详细信息
来源: 评论
SVDFed: Enabling Communication-Efficient Federated Learning via Singular-Value-Decomposition
SVDFed: Enabling Communication-Efficient Federated Learning ...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Haolin Wang Xuefeng Liu Jianwei Niu Shaojie Tang School of Computer Science and Engineering State Key Laboratory of Virtual Reality Technology and Systems Beihang University Beijing China Zhongguancun Laboratory Beijing China School of Information Engineering Zhengzhou University Research Institute of Industrial Technology Zhengzhou University Zhengzhou China Naveen Jindal School Management University of Texas at Dallas Richardson USA
Federated learning (FL) is an emerging paradigm of distributed machine learning. However, when applied to wireless network scenarios, FL usually suffers from high communication cost because clients need to transmit th...
来源: 评论
Bold but Cautious: Unlocking the Potential of Personalized Federated Learning through Cautiously Aggressive Collaboration
arXiv
收藏 引用
arXiv 2023年
作者: Wu, Xinghao Liu, Xuefeng Niu, Jianwei Zhu, Guogang Tang, Shaojie State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University Beijing China Zhongguancun Laboratory Beijing China Zhengzhou University Research Institute of Industrial Technology School of Information Engineering Zhengzhou University Zhengzhou China Jindal School of Management University of Texas Dallas United States
Personalized federated learning (PFL) reduces the impact of non-independent and identically distributed (non-IID) data among clients by allowing each client to train a personalized model when collaborating with others... 详细信息
来源: 评论