咨询与建议

限定检索结果

文献类型

  • 1,587 篇 会议
  • 552 篇 期刊文献

馆藏范围

  • 2,139 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,318 篇 工学
    • 841 篇 电子科学与技术(可...
    • 312 篇 计算机科学与技术...
    • 272 篇 电气工程
    • 220 篇 材料科学与工程(可...
    • 209 篇 信息与通信工程
    • 163 篇 软件工程
    • 110 篇 化学工程与技术
    • 103 篇 仪器科学与技术
    • 91 篇 控制科学与工程
    • 84 篇 机械工程
    • 74 篇 光学工程
    • 55 篇 动力工程及工程热...
    • 47 篇 冶金工程
    • 35 篇 生物工程
    • 27 篇 生物医学工程(可授...
    • 22 篇 力学(可授工学、理...
    • 14 篇 土木工程
    • 13 篇 建筑学
  • 416 篇 理学
    • 256 篇 物理学
    • 114 篇 数学
    • 111 篇 化学
    • 38 篇 生物学
    • 19 篇 系统科学
    • 19 篇 统计学(可授理学、...
  • 73 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 20 篇 医学
    • 16 篇 基础医学(可授医学...
    • 16 篇 临床医学
  • 17 篇 法学
    • 16 篇 社会学
  • 11 篇 经济学
  • 6 篇 军事学
  • 6 篇 艺术学
  • 1 篇 农学

主题

  • 83 篇 clocks
  • 81 篇 hardware
  • 80 篇 switches
  • 75 篇 application spec...
  • 70 篇 field programmab...
  • 61 篇 cmos technology
  • 57 篇 capacitors
  • 55 篇 logic gates
  • 53 篇 bandwidth
  • 51 篇 cmos integrated ...
  • 46 篇 power demand
  • 45 篇 computer archite...
  • 43 篇 simulation
  • 40 篇 throughput
  • 40 篇 algorithm design...
  • 39 篇 voltage
  • 39 篇 calibration
  • 37 篇 silicon
  • 35 篇 radio frequency
  • 33 篇 routing

机构

  • 639 篇 state key labora...
  • 313 篇 state key labora...
  • 171 篇 state key labora...
  • 97 篇 state key labora...
  • 78 篇 fudan university...
  • 72 篇 asic & system st...
  • 54 篇 asic and system ...
  • 33 篇 state-key labora...
  • 24 篇 state key labora...
  • 19 篇 state key labora...
  • 17 篇 fudan university...
  • 17 篇 state key labora...
  • 17 篇 university of ch...
  • 17 篇 institute of cir...
  • 15 篇 fudan university...
  • 14 篇 state key labora...
  • 13 篇 state key labora...
  • 13 篇 fudan university
  • 13 篇 micro-/nano-elec...
  • 11 篇 state key labora...

作者

  • 147 篇 xiaoyang zeng
  • 147 篇 junyan ren
  • 97 篇 fan ye
  • 85 篇 zhiliang hong
  • 82 篇 david wei zhang
  • 77 篇 ren junyan
  • 68 篇 lingli wang
  • 67 篇 jun han
  • 62 篇 wei li
  • 60 篇 hao min
  • 59 篇 peng zhou
  • 56 篇 zeng xiaoyang
  • 51 篇 hong zhiliang
  • 43 篇 ning li
  • 42 篇 min hao
  • 37 篇 jinmei lai
  • 35 篇 na yan
  • 34 篇 ye fan
  • 34 篇 任俊彦
  • 33 篇 洪志良

语言

  • 1,973 篇 英文
  • 121 篇 中文
  • 45 篇 其他
检索条件"机构=State Key Laboratory of-ASIC and System"
2139 条 记 录,以下是121-130 订阅
排序:
Sharp-Switching Devices with Positive Feedback Mechanisms Based on Silicon-On-Insulator Substrate  16
Sharp-Switching Devices with Positive Feedback Mechanisms Ba...
收藏 引用
16th IEEE International Conference on Solid-state and Integrated Circuit Technology, ICSICT 2022
作者: Chen, Yingxin Wang, Haihua Wan, Jing Fudan University State Key Laboratory of Asic and System School of Information Science and Technology Shanghai200433 China
In this work, we demonstrate Z2-FET (zero subthreshold swing and zero impact ionization FET) and UJ-FET (unijunction FET) on silicon-on-insulator substrate utilizing a CMOS-compatible process. Attributed to novel posi... 详细信息
来源: 评论
2T1C DRAM based on semiconducting MoS_(2) and semimetallic graphene for in-memory computing
收藏 引用
National Science Open 2023年 第4期2卷 65-75页
作者: Saifei Gou Yin Wang Xiangqi Dong Zihan Xu Xinyu Wang Qicheng Sun Yufeng Xie Peng Zhou Wenzhong Bao State Key Laboratory of ASIC and System School of MicroelectronicsFudan UniversityZhangjiang Fudan International Innovation CenterShanghai 200433China Shenzhen Six Carbon Technology Shenzhen 518055China
In-memory computing is an alternative method to effectively accelerate the massive data-computing tasks of artificial intelligence(AI)and break the memory *** this work,we propose a 2T1C DRAM structure for in-memory *... 详细信息
来源: 评论
A 250MS/s, 12 Bit Pipeline-SAR ADC Using Coarse-Fine Ring Amplifier
A 250MS/s, 12 Bit Pipeline-SAR ADC Using Coarse-Fine Ring Am...
收藏 引用
International Conference on Solid-state and Integrated Circuit Technology
作者: Linghao Liu Junyan Ren Fan Ye Department of Microelectronics State Key Laboratory of ASIC and System Fudan University Shanghai China
The ring amplifier is an energy effective choice for high performance pipeline ADC. However, sensitivity to process, supply voltage and temperature (PVT) variations and complex stability mechanism make it less practic... 详细信息
来源: 评论
SFFTNet: Sparse Feature Fusion Transformer Network for Image Deblurring
SFFTNet: Sparse Feature Fusion Transformer Network for Image...
收藏 引用
IEEE International Symposium on Circuits and systems (ISCAS)
作者: Faxing Lei Chao Liu Wei Li Minge Jing Xiankui Xiong Xuanpeng Zhu Yibo Fan State Key Laboratory of ASIC and System Fudan University China ZTE Corporation China
The U-Net structure, with its an encoder-decoder architecture, has been widely adopted by many deep learning methods for image deblurring. Most methods concentrate on the design of encoder and decoder block and use sk... 详细信息
来源: 评论
TENG: A General-Purpose and Efficient Processor Architecture for Accelerating DNN
TENG: A General-Purpose and Efficient Processor Architecture...
收藏 引用
IEEE International Conference on Artificial Intelligence Circuits and systems (AICAS)
作者: Zekun Zhang Yujie Cai Tianjiao Liao Chengyu Xu Xin Jiao State Key Laboratory of ASIC and System Fudan University Shanghai China SenseTime Research
Deep learning has been widely deployed in the fields such as computer vision and speech, etc. However, with the development of deep learning algorithms, neural networks have gradually become more complex, the subseque... 详细信息
来源: 评论
Impact Analysis of Negative Gate Voltage on SiCMOS Reliability Under OFF-state Avalanche Stress
Impact Analysis of Negative Gate Voltage on SiCMOS Reliabili...
收藏 引用
International Symposium on Physical & Failure Analysis of Integrated Circuits
作者: Hang Xu Jianbin Guo Tianyang Feng Yafen Yang Qing-Qing Sun David Wei Zhang State Key Laboratory of ASIC and System School of Microelectronics Fudan University Shanghai China
This paper fully researches and analyzes the effect of negative OFF-state gate-source bias voltage (V GS , off) on the device degradation under OFF-state avalanche stress. It is found that the degradation associated w... 详细信息
来源: 评论
Confidence Judgement Network: An Efficient Sample Filter for Lifelong Distillation  16
Confidence Judgement Network: An Efficient Sample Filter for...
收藏 引用
16th IEEE International Conference on Solid-state and Integrated Circuit Technology, ICSICT 2022
作者: Zhang, Zhenyin Xue, Yue Chen, Gengsheng Fudan University State Key Laboratory of Asic and System No.825 Zhangheng Road Shanghai201203 China
Unlabeled raw data of the real world collected by the edge computing platforms can be utilized to improve the performance of the lightweight deep learning models by using Lifelong Distillation (LD) method. However, no... 详细信息
来源: 评论
A Feature Map Lossless Compression Framework for Convolutional Neural Network Accelerators
A Feature Map Lossless Compression Framework for Convolution...
收藏 引用
IEEE International Conference on Artificial Intelligence Circuits and systems (AICAS)
作者: Zekun Zhang Xin Jiao Chengyu Xu State Key Laboratory of ASIC and System Fudan University Shanghai China SenseTime Research
This paper proposes a predictor-based lossless compression algorithm for the feature maps present within convolutional neural networks (CNNs), which provides the possibility to solve the system bandwidth bottleneck an... 详细信息
来源: 评论
A Dynamic-Texture-Guided Fast Algorithm for Geometric Partitioning Mode of VVC  15
A Dynamic-Texture-Guided Fast Algorithm for Geometric Partit...
收藏 引用
15th IEEE International Conference on asic, asicON 2023
作者: Yang, Xuehang Li, Wei Chen, Shushi Huang, Leilei Fan, Yibo Fudan University State Key Laboratory of ASIC & System Shanghai200433 China East China Normal University Institute of Microelectronic Circuits and Systems Shanghai200241 China
Geometric Partitioning Mode (GPM) efficiently describes the irregular edges of motion fields, but it has high computational complexity. To address this issue, many fast algorithms directly detect edges based on static... 详细信息
来源: 评论
The development of transfer technologies for advanced 2D circuits integration
收藏 引用
Information & Functional Materials 2024年 第3期1卷 304-322页
作者: Zhenggang Cai Liwei Liu Peng Zhou State Key Laboratory of ASIC and System School of MicroelectronicsFudan UniversityShanghaiChina Frontier Institute of Chip and System Fudan UniversityShanghaiChina
In the light of the scaling limitations of conventional CMOS technology,twodimensional(2D)materials offer a transformative avenue for advancing Moore's law in the post‐Moore *** technology for transferring 2D mat... 详细信息
来源: 评论