咨询与建议

限定检索结果

文献类型

  • 1,201 篇 会议
  • 496 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 1,699 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,081 篇 工学
    • 593 篇 计算机科学与技术...
    • 547 篇 软件工程
    • 425 篇 控制科学与工程
    • 236 篇 机械工程
    • 123 篇 生物工程
    • 119 篇 仪器科学与技术
    • 118 篇 交通运输工程
    • 105 篇 信息与通信工程
    • 77 篇 电气工程
    • 57 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 39 篇 电子科学与技术(可...
    • 31 篇 化学工程与技术
    • 27 篇 安全科学与工程
    • 24 篇 动力工程及工程热...
    • 21 篇 公安技术
  • 398 篇 理学
    • 210 篇 数学
    • 116 篇 生物学
    • 108 篇 系统科学
    • 77 篇 物理学
    • 76 篇 统计学(可授理学、...
    • 21 篇 化学
  • 323 篇 管理学
    • 274 篇 管理科学与工程(可...
    • 63 篇 工商管理
    • 51 篇 图书情报与档案管...
  • 65 篇 医学
    • 51 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
  • 46 篇 法学
    • 39 篇 社会学
  • 23 篇 农学
  • 22 篇 经济学
    • 22 篇 应用经济学
  • 16 篇 教育学
  • 14 篇 艺术学
  • 11 篇 文学
  • 2 篇 军事学
  • 1 篇 历史学

主题

  • 89 篇 training
  • 75 篇 feature extracti...
  • 59 篇 computational mo...
  • 53 篇 neural networks
  • 51 篇 reinforcement le...
  • 42 篇 optimal control
  • 39 篇 automation
  • 36 篇 task analysis
  • 36 篇 mathematical mod...
  • 33 篇 robot kinematics
  • 32 篇 trajectory
  • 32 篇 vehicles
  • 31 篇 deep learning
  • 30 篇 visualization
  • 29 篇 robots
  • 28 篇 machine learning
  • 28 篇 data models
  • 27 篇 adaptive dynamic...
  • 27 篇 predictive model...
  • 26 篇 conferences

机构

  • 528 篇 state key labora...
  • 236 篇 the state key la...
  • 189 篇 school of artifi...
  • 142 篇 university of ch...
  • 127 篇 state key labora...
  • 100 篇 the state key la...
  • 81 篇 qingdao academy ...
  • 80 篇 state key labora...
  • 58 篇 ieee
  • 55 篇 the state key la...
  • 53 篇 school of automa...
  • 43 篇 state key labora...
  • 33 篇 beijing engineer...
  • 29 篇 the school of ar...
  • 26 篇 institute of aut...
  • 22 篇 school of comput...
  • 22 篇 the state key la...
  • 22 篇 state key labora...
  • 21 篇 state key labora...
  • 20 篇 institute of sma...

作者

  • 190 篇 fei-yue wang
  • 108 篇 wang fei-yue
  • 90 篇 gang xiong
  • 67 篇 min tan
  • 56 篇 derong liu
  • 56 篇 zeng-guang hou
  • 51 篇 qinglai wei
  • 50 篇 xiong gang
  • 50 篇 junzhi yu
  • 48 篇 yisheng lv
  • 48 篇 fenghua zhu
  • 46 篇 dongbin zhao
  • 44 篇 zhao dongbin
  • 40 篇 tan min
  • 36 篇 wei qinglai
  • 36 篇 xiao wang
  • 35 篇 zhengxing wu
  • 35 篇 liu derong
  • 34 篇 yu junzhi
  • 33 篇 daniel zeng

语言

  • 1,652 篇 英文
  • 32 篇 中文
  • 15 篇 其他
  • 1 篇 法文
检索条件"机构=State Key Laborotory of Control and Management for Complex Systems"
1699 条 记 录,以下是31-40 订阅
排序:
Point Cloud Classification Using Content-Based Transformer via Clustering in Feature Space
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第1期11卷 231-239页
作者: Yahui Liu Bin Tian Yisheng Lv Lingxi Li Fei-Yue Wang the State Key Laboratory for Management and Control of Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190 the School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100190 IEEE the Transportation and Autonomous Systems Institute(TASI)and the Department of Electrical and Computer Engineering Purdue School of Engineering and TechnologyIndiana University-Purdue University Indianapolis(IUPUI)Indianapolis 46202 USA
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est... 详细信息
来源: 评论
The Journey/DAO/TAO of Embodied Intelligence: From Large Models to Foundation Intelligence and Parallel Intelligence
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第6期11卷 1313-1316页
作者: Tianyu Shen Jinlin Sun Shihan Kong Yutong Wang Juanjuan Li Xuan Li Fei-Yue Wang College of Information Science and Technology Beijing University of Chemical TechnologyBeijing 100029China School of Electrical and Information Engineering Jiangsu UniversityZhenjiang 212013China State Key Laboratory for Turbulence and Complex Systems Department of Advanced Manufacturing and RoboticsCollege of EngineeringPeking UniversityBeijing 100871China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of AutomationChinese Academy of SciencesBeijing 100190China Peng Cheng Laboratory Shenzhen 518000China State Key Laboratory for Management and Control of Complex Systems Chinese Academy of SciencesBeijing 100190 Faculty of Innovation Engineering Macao University of Science and TechnologyMacao 999078China IEEE
THE tremendous impact of large models represented by ChatGPT[1]-[3]makes it necessary to con-sider the practical applications of such models[4].However,for an artificial intelligence(AI)to truly evolve,it needs to pos... 详细信息
来源: 评论
VistaScenario: Interaction Scenario Engineering for Vehicles with Intelligent systems for Transport Automation
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-17页
作者: Chang, Cheng Zhang, Jiawei Ge, Jingwei Zhang, Zuo Wei, Junqing Li, Li Wang, Fei-Yue Department of Automation Tsinghua University Beijing China DiDi Autonomous Driving Company Beijing China Department of Automation BNRist Tsinghua University Beijing China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China
Intelligent vehicles and autonomous driving systems rely on scenario engineering for intelligence and index (I&I), calibration and certification (C&C), and verification and validation (V&V). To extract and... 详细信息
来源: 评论
Data-driven finite-time adaptive attitude tracking control for spacecraft
收藏 引用
Advances in Space Research 2025年 第12期75卷 8780-8791页
作者: Wang, Jianhui He, Guangping Bian, Guibin Geng, Shixiong College of Mechanical & Energy Engineering Beijing University Of Technology Beijing100124 China Department of Mechanical and Electrical Engineering North China University of Technology Beijing100144 China State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China
This paper proposes a novel data-driven finite-time adaptive control method for the spacecraft attitude tracking control problem with inertial uncertainty. Based on the dynamic regression extension technique, the dist... 详细信息
来源: 评论
Conservative-Progressive Collaborative Learning for Semi-Supervised Semantic Segmentation
收藏 引用
IEEE Transactions on Image Processing 2023年 32卷 6183-6194页
作者: Fan, Siqi Zhu, Fenghua Feng, Zunlei Lv, Yisheng Song, Mingli Wang, Fei-Yue Institute of Automation State Key Laboratory of Management and Control of Complex Systems Chinese Academy of Sciences Beijing100190 China Tsinghua University Beijing100190 China Zhejiang University College of Computer Science and Technology Hangzhou310027 China
Pseudo supervision is regarded as the core idea in semi-supervised learning for semantic segmentation, and there is always a tradeoff between utilizing only the high-quality pseudo labels and leveraging all the pseudo... 详细信息
来源: 评论
Implicit Scene Context-aware Interactive Trajectory Prediction for Autonomous Driving
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2023年 第9期9卷 1-17页
作者: Lan, Wenxing Li, Dachuan Hao, Qi Zhao, Dezong Tian, Bin Research Institute of Trustworthy Autonomous Systems Southern University of Science and Technology Shenzhen China James Watt School of Engineering University of Glasgow Glasgow U.K State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences China
The accurate prediction of behaviors of surrounding traffic participants is critical for autonomous vehicles (AV). How to fully encode both explicit (e.g., map structure and road geometry) and implicit scene context i... 详细信息
来源: 评论
Development and control of Underwater Gliding Robots:A Review
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第9期9卷 1543-1560页
作者: Jian Wang Zhengxing Wu Huijie Dong Min Tan Junzhi Yu the State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190 the School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China the State Key Laboratory for Turbulence and Complex System Department of Mechanics and Engineering ScienceBIC-ESATCollege of EngineeringPeking UniversityBeijing 100871China
As one of the most effective vehicles for ocean development and exploration,underwater gliding robots(UGRs)have the unique characteristics of low energy consumption and strong ***,by borrowing the motion principles of... 详细信息
来源: 评论
A Novel Attention-based Global and Local Information Fusion Neural Network for Group Recommendation
收藏 引用
Machine Intelligence Research 2022年 第4期19卷 331-346页
作者: Song Zhang Nan Zheng Dan-Li Wang State Key Laboratory of Management and Control for Complex Systems Institute of AutomationChinese Academy of SciencesBeijing 100190China School of Artificial Intelligence University of Chinese Academy of SciencesBeijing 100049China
Due to the popularity of group activities in social media,group recommendation becomes increasingly *** aims to pursue a list of preferred items for a target *** deep learning-based methods on group recommendation hav... 详细信息
来源: 评论
A PREA and OODA Computing Framework of Unmanned systems to Perform complex Tasks
IEEE Transactions on Intelligent Vehicles
收藏 引用
IEEE Transactions on Intelligent Vehicles 2024年 1-18页
作者: Yang, Dongsheng Yu, Lei Zhang, Yi Zhu, Fenghua Li, Qiang Cui, Huachao Ma, Qiongmin Fan, Lili Tian, Yonglin Jinan University Guangzhou China Intelligent Science & Technology Academy Limited of CASIC Beijing China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing China State Key Laboratory for Management and Control of Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China 28th Research Institute of China Electronics Technology Group Corporation Nanjing China National Key Laboratory for Complex Systems Simulation National University of Defense Technology Changsha China School of Information and Electronics Beijing Institute of Technology Beijing China
A C2 computing framework for unmanned systems to perform complex tasks is proposed using methods of system of systems engineering, which is formed by combining the macro-scale command and control (C2) process mechanis... 详细信息
来源: 评论
The Prospects of Multi-modal Pre-trained Models in Epidemic Forecasting  9th
The Prospects of Multi-modal Pre-trained Models in Epidemi...
收藏 引用
9th China National Conference on Big Data and Social Computing, BDSC 2024
作者: Fei, Jiaqiang Zhao, Pengfei Luo, Tianyi Wang, Jiaojiao Cao, Zhidong The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing100190 China
Accurate epidemic forecasting is imperative in light of the increasing global threat posed by epidemic diseases. Presently, researchers predominantly approach this challenge as a time-series prediction task and have p... 详细信息
来源: 评论