咨询与建议

限定检索结果

文献类型

  • 31 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 16 篇 计算机科学与技术...
    • 14 篇 软件工程
    • 5 篇 生物工程
    • 4 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 3 篇 生物医学工程(可授...
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
    • 2 篇 安全科学与工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
  • 21 篇 理学
    • 17 篇 数学
    • 9 篇 统计学(可授理学、...
    • 5 篇 生物学
    • 4 篇 系统科学
    • 2 篇 物理学
    • 2 篇 化学
  • 5 篇 管理学
    • 5 篇 图书情报与档案管...
  • 4 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 2 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...

主题

  • 2 篇 prediction model...
  • 2 篇 deep neural netw...
  • 2 篇 bayesian network...
  • 2 篇 forecasting
  • 1 篇 causality
  • 1 篇 causal discovery
  • 1 篇 multi-scenario g...
  • 1 篇 compressed sensi...
  • 1 篇 regression analy...
  • 1 篇 statistics
  • 1 篇 large datasets
  • 1 篇 signal encoding
  • 1 篇 additives
  • 1 篇 genes
  • 1 篇 markov processes
  • 1 篇 information theo...
  • 1 篇 contrastive lear...
  • 1 篇 topic similarity...
  • 1 篇 instrumental var...
  • 1 篇 benchmarking

机构

  • 4 篇 department of st...
  • 3 篇 informatics inst...
  • 3 篇 helmholtz ai mun...
  • 3 篇 centre inria de ...
  • 3 篇 tübingen ai cent...
  • 3 篇 department of st...
  • 3 篇 vector institute
  • 3 篇 machine learning...
  • 3 篇 department of co...
  • 3 篇 statistics progr...
  • 3 篇 center for advan...
  • 2 篇 courant institut...
  • 2 篇 department of co...
  • 2 篇 center for data ...
  • 2 篇 statistical lear...
  • 2 篇 institute of big...
  • 2 篇 department of st...
  • 2 篇 spotify united k...
  • 2 篇 center for data ...
  • 2 篇 key laboratory o...

作者

  • 7 篇 bischl bernd
  • 5 篇 rügamer david
  • 4 篇 bergherr elisabe...
  • 3 篇 gasparin matteo
  • 3 篇 ramdas aaditya
  • 2 篇 li yingzhen
  • 2 篇 aitchison lauren...
  • 2 篇 hou muzhou
  • 2 篇 fortuin vincent
  • 2 篇 rudner tim g.j.
  • 2 篇 papamarkou theod...
  • 2 篇 barbier damien
  • 2 篇 moens marie-fran...
  • 2 篇 filippone mauriz...
  • 2 篇 teh yee whye
  • 2 篇 xie xiaoliang
  • 2 篇 osborne michael ...
  • 2 篇 kristiadi agusti...
  • 2 篇 wei guo
  • 2 篇 wilson andrew go...

语言

  • 30 篇 英文
  • 4 篇 其他
检索条件"机构=Statistical Learning and Data Science"
34 条 记 录,以下是1-10 订阅
排序:
Topics in the Haystack: Extracting and Evaluating Topics beyond Coherence
arXiv
收藏 引用
arXiv 2023年
作者: Thielmann, Anton Seifert, Quentin Reuter, Arik Bergherr, Elisabeth Säfken, Benjamin Chair of Data Science and Applied Statistics TU Clausthal Germany Chair of Spatial Data Science and Statistical Learning University of Göttingen Germany
Extracting and identifying latent topics in large text corpora has gained increasing importance in Natural Language Processing (NLP). Most models, whether probabilistic models similar to Latent Dirichlet Allocation (L... 详细信息
来源: 评论
Robust and Efficient Imbalanced Positive-Unlabeled learning with Self-supervision
arXiv
收藏 引用
arXiv 2022年
作者: Dorigatti, Emilio Schweisthal, Jonas Bischl, Bernd Rezaei, Mina Statistical Learning and Data Science Ludwig-Maximilians-University Munich Germany
learning from positive and unlabeled (PU) data is a setting where the learner only has access to positive and unlabeled samples while having no information on negative examples. Such PU setting is of great importance ... 详细信息
来源: 评论
PREDICTION-BASED VARIABLE SELECTION FOR COMPONENT-WISE GRADIENT BOOSTING
arXiv
收藏 引用
arXiv 2023年
作者: Potts, Sophie Bergherr, Elisabeth Griesbach, Colin Reinke, Constantin Spatial Data Science and Statistical Learning University of Goettingen Goettingen Germany Empirical Methods in Social Science and Demography University of Rostock Rostock Germany
Model-based component-wise gradient boosting is a popular tool for data-driven variable selection. In order to improve its prediction and selection qualities even further, several modifications of the original algorit... 详细信息
来源: 评论
Conformal online model aggregation
arXiv
收藏 引用
arXiv 2024年
作者: Gasparin, Matteo Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States Department of Statistical Sciences University of Padova Italy
Conformal prediction equips machine learning models with a reasonable notion of uncertainty quantification without making strong distributional assumptions. It wraps around any black-box prediction model and converts ... 详细信息
来源: 评论
Merging uncertainty sets via majority vote
arXiv
收藏 引用
arXiv 2024年
作者: Gasparin, Matteo Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States Department of Statistical Sciences University of Padova Italy
Given K uncertainty sets that are arbitrarily dependent — for example, confidence intervals for an unknown parameter obtained with K different estimators, or prediction sets obtained via conformal prediction based on... 详细信息
来源: 评论
Topological Analysis on Multi-scenario Graphs: Applications Toward Discerning Variability in SARS-CoV-2 and Topic Similarity in Research
收藏 引用
Transactions of the Indian National Academy of Engineering : an international journal of engineering and technology 2022年 第1期7卷 365-374页
作者: Sourav Biswas Malay Bhattacharyya Sanghamitra Bandyopadhyay Indian Statistical Institute Kolkata India. University of Calcutta Kolkata India. Machine Intelligence Unit Centre for Artificial Intelligence and Machine Learning Technology Innovation Hub on Data Science Big Data Analytics and Data Curation Indian Statistical Institute Kolkata India.
A network is often an obvious choice for modeling real-life interconnected systems, where the nodes represent interacting objects and the edges represent their associations. There has been immense progress in complex ... 详细信息
来源: 评论
Combining exchangeable p-values
arXiv
收藏 引用
arXiv 2024年
作者: Gasparin, Matteo Wang, Ruodu Ramdas, Aaditya Department of Statistical Sciences University of Padova Italy Department of Statistics and Actuarial Science University of Waterloo Canada Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
The problem of combining p-values is an old and fundamental one, and the classic assumption of independence is often violated or unverifiable in many applications. There are many well-known rules that can combine a se... 详细信息
来源: 评论
HPO × ELA: Investigating Hyperparameter Optimization Landscapes by Means of Exploratory Landscape Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Schneider, Lennart Schäpermeier, Lennart Prager, Raphael Patrick Bischl, Bernd Trautmann, Heike Kerschke, Pascal Statistical Learning and Data Science LMU Munich Germany Big Data Analytics in Transportation TU Dresden Germany Data Science: Statistics and Optimization University of Münster Germany Data Management and Biometrics Group University of Twente Netherlands
Hyperparameter optimization (HPO) is a key component of machine learning models for achieving peak predictive performance. While numerous methods and algorithms for HPO have been proposed over the last years, little p... 详细信息
来源: 评论
Joint Debiased Representation learning and Imbalanced data Clustering
arXiv
收藏 引用
arXiv 2021年
作者: Rezaei, Mina Dorigatti, Emilio Ruegamer, David Bischl, Bernd Statistical Learning and Data Science Ludwig-Maximilians-University Munich Germany
One of the most promising approaches for unsupervised learning is combining deep representation learning and deep clustering. Some recent works propose to simultaneously learn representation using deep neural networks... 详细信息
来源: 评论
Existence of Direct Density Ratio Estimators
arXiv
收藏 引用
arXiv 2025年
作者: Banzato, Erika Drton, Mathias Saraf-Poor, Kian Shi, Hongjian Department of Statistical Sciences University of Padova Italy TUM School of Computation Information and Technology Munich Data Science Institute Technical University of Munich Munich Center for Machine Learning Germany Department of Statistics Columbia University United States TUM School of Computation Information and Technology Technical University of Munich Germany
Many two-sample problems call for a comparison of two distributions from an exponential family. Density ratio estimation methods provide ways to solve such problems through direct estimation of the differences in natu... 详细信息
来源: 评论