咨询与建议

限定检索结果

文献类型

  • 19 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 27 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 12 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 3 篇 信息与通信工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 化学工程与技术
    • 2 篇 生物工程
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
  • 14 篇 理学
    • 8 篇 数学
    • 4 篇 地球物理学
    • 4 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 大气科学
    • 1 篇 系统科学
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 2 篇 learning systems
  • 2 篇 support vector m...
  • 2 篇 galaxies
  • 2 篇 cost functions
  • 1 篇 cortical network
  • 1 篇 mixture models
  • 1 篇 dynamical system...
  • 1 篇 hilbert space
  • 1 篇 problem solving
  • 1 篇 statistics
  • 1 篇 kernel methods
  • 1 篇 large datasets
  • 1 篇 parameter expans...
  • 1 篇 bacteriophages
  • 1 篇 bayesian structu...
  • 1 篇 hilbert-schmidt ...
  • 1 篇 sparse and low-r...
  • 1 篇 learning algorit...
  • 1 篇 spectroscopic an...
  • 1 篇 contrastive lear...

机构

  • 4 篇 institute of ast...
  • 4 篇 astronomy progra...
  • 3 篇 the research cen...
  • 3 篇 department of ad...
  • 3 篇 department of ph...
  • 3 篇 institute for co...
  • 3 篇 theoretical astr...
  • 3 篇 informatics inst...
  • 3 篇 school of physic...
  • 3 篇 centre inria de ...
  • 3 篇 department of ph...
  • 3 篇 research center ...
  • 3 篇 niels bohr insti...
  • 3 篇 kitami institute...
  • 3 篇 waseda research ...
  • 3 篇 tübingen ai cent...
  • 3 篇 w. m. keck obser...
  • 3 篇 national astrono...
  • 3 篇 center for compu...
  • 3 篇 department of as...

作者

  • 5 篇 smola alex j.
  • 4 篇 vishwanathan s.v...
  • 3 篇 lee chien-hsiu
  • 3 篇 sasaki rin
  • 3 篇 komiyama yutaka
  • 3 篇 matsumoto akinor...
  • 3 篇 harikane yuichi
  • 3 篇 isobe yuki
  • 3 篇 ouchi masami
  • 3 篇 hattori takashi
  • 3 篇 koyama shuhei
  • 3 篇 hayashi kohei
  • 3 篇 zhang yechi
  • 3 篇 fukushima hajime
  • 3 篇 sugahara yuma
  • 3 篇 rauch michael
  • 3 篇 ono yoshiaki
  • 3 篇 le quoc v.
  • 3 篇 suzuki akihiro
  • 3 篇 kawasaki masahir...

语言

  • 24 篇 英文
  • 3 篇 其他
检索条件"机构=Statistical Machine Learning Program"
27 条 记 录,以下是1-10 订阅
排序:
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on machine learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Position: Bayesian Deep learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Position: Bayesian Deep learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
The SCUBA-2 Large eXtragalactic Survey: 850 μm map, catalogue and the bright-end number counts of the XMM-LSS field
arXiv
收藏 引用
arXiv 2023年
作者: Garratt, T.K. Geach, J.E. Tamura, Y. Coppin, K.E.K. Franco, M. Ao, Y. Chen, C.-C. Cheng, C. Clements, D.L. Dai, Y.S. Dannerbauer, H. Greve, T.R. Hatsukade, B. Hwang, H.S. Jiang, L. Kohno, K. Koprowski, M.P. Michalowski, M.J. Sawicki, M. Scott, D. Shim, H. Takeuchi, T.T. Wang, W.-H. Xue, Y.Q. Yang, C. Centre for Astrophysics Research University of Hertfordshire HatfieldAL10 9AB United Kingdom Division of Particle and Astrophysical Science Nagoya University Aichi Nagoya464-8602 Japan Purple Mountain Observatory Key Laboratory for Radio Astronomy Chinese Academy of Sciences 10 Yuanhua Road Nanjing210023 China School of Astronomy and Space Science University of Science and Technology of China Anhui Hefei230026 China Academia Sinica Institute of Astronomy and Astrophysics No. 1 Section 4 Roosevelt Road Taipei10617 Taiwan Chinese Academy of Sciences South America Center for Astronomy National Astronomical Observatories CAS Beijing100101 China Imperial College London Blackett Lab Prince Consort Road LondonSW7 2AZ United Kingdom National Astronomical Observatories Chinese Academy of Sciences 20A Datun RoadChaoyang District Beijing100101 China Tenerife La LagunaE-38205 Spain Universidad de La Laguna Dpto. Astrofísica Tenerife La LagunaE-38206 Spain National Space Institute DTU Space Technical University of Denmark Elektrovej 327 Kgs. LyngbyDK-2800 Denmark Department of Physics and Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom Institute of Astronomy Graduate School of Science The University of Tokyo 2-21-1 Osawa Tokyo Mitaka181-0015 Japan Astronomy Program Department of Physics and Astronomy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of SNU Astronomy Research Center Astronomy Program Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of Kavli Institute for Astronomy and Astrophysics Peking University No. 5 Yiheyuan Road Haidian District Beijing100871 China Institute of Astronomy Faculty of Physics Astronomy and Informatics Nicolaus Copernicus University Grudziadzka 5 Torun87-100 Poland Astronomical Observatory Institute Faculty of Physics Adam Mickiewicz University ul. Sloneczna 36 Poznań60-286 Poland Department of Astronomy and P
We present 850 μm imaging of the XMM-LSS field observed for 170 hours as part of the James Clerk Maxwell Telescope SCUBA-2 Large eXtragalactic Survey (S2LXS). S2LXS XMM-LSS maps an area of 9 deg2, reaching a moderate... 详细信息
来源: 评论
EMPRESS. X. Spatially resolved mass-metallicity relation in extremely metal-poor galaxies: Evidence of episodic star-formation fueled by a metal-poor gas infall
arXiv
收藏 引用
arXiv 2024年
作者: Nakajima, Kimihiko Ouchi, Masami Isobe, Yuki Xu, Yi Ozaki, Shinobu Nagao, Tohru Inoue, Akio K. Rauch, Michael Kusakabe, Haruka Onodera, Masato Nishigaki, Moka Ono, Yoshiaki Sugahara, Yuma Hattori, Takashi Hirai, Yutaka Hashimoto, Takuya Kim, Ji Hoon Moriya, Takashi J. Yanagisawa, Hiroto Aoyama, Shohei Fujimoto, Seiji Fukushima, Hajime Fukushima, Keita Harikane, Yuichi Hatano, Shun Hayashi, Kohei Ishigaki, Tsuyoshi Kawasaki, Masahiro Kojima, Takashi Komiyama, Yutaka Koyama, Shuhei Koyama, Yusei Lee, Chien-Hsiu Matsumoto, Akinori Mawatari, Ken Motohara, Kentaro Murai, Kai Nagamine, Kentaro Nakane, Minami Saito, Tomoki Sasaki, Rin Shibuya, Takatoshi Suzuki, Akihiro Takeuchi, Tsutomu T. Umeda, Hiroya Umemura, Masayuki Watanabe, Kuria Yabe, Kiyoto Yajima, Hidenobu Zhang, Yechi National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka Tokyo181-8588 Japan Institute for Cosmic Ray Research The University of Tokyo 5-1-5 Kashiwanoha Chiba Kashiwa277-8582 Japan Osawa 2-21-1 Mitaka Tokyo181-8588 Japan University of Tokyo Chiba Kashiwa277-8583 Japan Kavli Institute for Cosmology University of Cambridge Madingley Road CambridgeCB3 0HA United Kingdom Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue CambridgeCB3 0HE United Kingdom Waseda Research Institute for Science and Engineering Faculty of Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo169-8555 Japan Department of Physics Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan Department of Astronomy Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan Research Center for Space and Cosmic Evolution Ehime University Bunkyo-cho 2-5 Ehime Matsuyama790-8577 Japan Department of Physics School of Advanced Science and Engineering Faculty of Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo169-8555 Japan Observatories of the Carnegie Institution for Science 813 Santa Barbara St. PasadenaCA91101 United States Observatoire de Genève Université de Genève 51 Chemin de Pégase Versoix1290 Switzerland 650 North Aohoku Place HiloHI96720 United States Department of Physics and Astronomy University of Notre Dame 225 Nieuwland Science Hall Notre DameIN46556 United States Astronomical Institute Tohoku University 6-3 Aoba Aramaki Aoba-ku Miyagi Sendai980-8578 Japan Division of Physics Faculty of Pure and Applied Sciences University of Tsukuba Ibaraki Tsukuba305-8571 Japan Faculty of Pure and Applied Sciences University of Tsukuba Ibaraki Tsukuba305-8571 Japan Astronomy Program Department of Physics and Astronomy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of SNU Astronomy Research Cent
Using the Subaru/FOCAS IFU capability, we examine the spatially resolved relationships between gas-phase metallicity, stellar mass, and star-formation rate surface densities (Σ★ and ΣSFR, respectively) in extremely... 详细信息
来源: 评论
EMPRESS. XII. Statistics on the Dynamics and Gas Mass Fraction of Extremely-Metal Poor Galaxies
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Yi Ouchi, Masami Isobe, Yuki Nakajima, Kimihiko Ozaki, Shinobu Bouché, Nicolas F. Wise, John H. Emsellem, Eric Kusakabe, Haruka Hattori, Takashi Nagao, Tohru Chiaki, Gen Fukushima, Hajime Harikane, Yuichi Hayashi, Kohei Hirai, Yutaka Kim, Ji Hoon Maseda, Michael V. Nagamine, Kentaro Shibuya, Takatoshi Sugahara, Yuma Yajima, Hidenobu Aoyama, Shohei Fujimoto, Seiji Fukushima, Keita Hatano, Shun Inoue, Akio K. Ishigaki, Tsuyoshi Kawasaki, Masahiro Kojima, Takashi Komiyama, Yutaka Koyama, Shuhei Koyama, Yusei Lee, Chien-Hsiu Matsumoto, Akinori Mawatari, Ken Moriya, Takashi J. Motohara, Kentaro Murai, Kai Nishigaki, Moka Onodera, Masato Ono, Yoshiaki Rauch, Michael Saito, Tomoki Sasaki, Rin Suzuki, Akihiro Takeuchi, Tsutomu T. Umeda, Hiroya Umemura, Masayuki Watanabe, Kuria Yabe, Kiyoto Zhang, Yechi Institute for Cosmic Ray Research The University of Tokyo 5-1-5 Kashiwanoha Chiba Kashiwa277-8582 Japan Department of Astronomy Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka Tokyo181-8588 Japan University of Tokyo Chiba Kashiwa277-8583 Japan Department of Physics Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan Univ Lyon Univ Lyon1 ENS de Lyon CNRS Centre de Recherche Astrophysique de Lyon UMR5574 Saint-Genis-LavalF-69230 France Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology AtlantaGA30332 United States European Southern Observatory Karl-Schwarzschild-Straße 2 Garching85748 Germany Observatoire de Genéve Université de Genéve 51 Ch. des Maillettes Versoix1290 Switzerland 650 North A’ohoku Place HiloHI96720 United States Research Center for Space and Cosmic Evolution Ehime University Bunkyo-cho 2-5 Ehime Matsuyama790-8577 Japan Center for Computational Sciences University of Tsukuba Ten-nodai 1-1-1 Tsukuba Ibaraki305-8577 Japan Department of Physics and Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom National Institute of Technology Ichinoseki College Hagisho Ichinoseki021-8511 Japan Astronomical Institute Tohoku University 6-3 Aoba Aramaki Aoba-ku Miyagi Sendai980-8578 Japan Department of Physics and Astronomy University of Notre Dame 225 Nieuwland Science Hall Notre DameIN46556 United States Astronomy Program Department of Physics and Astronomy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of SNU Astronomy Research Center Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of Department of Astronomy University of Wisconsin-Madison 475 N. Charter Street MadisonWI53706 United States Theoretical Astrophysics Department of Earth & Space S
We present demography of the dynamics and gas-mass fraction of 33 extremely metal-poor galaxies (EMPGs) with metallicities of 0.015 − 0.195 Zo and low stellar masses of 104 − 108 Mo in the local universe. We conduct d... 详细信息
来源: 评论
EMPRESS. IX. Extremely Metal-Poor Galaxies are Very Gas-Rich Dispersion-Dominated Systems: Will JWST Witness Gaseous Turbulent High-z Primordial Galaxies?
arXiv
收藏 引用
arXiv 2022年
作者: Isobe, Yuki Ouchi, Masami Nakajima, Kimihiko Ozaki, Shinobu Bouché, Nicolas F. Wise, John H. Xu, Yi Emsellem, Eric Kusakabe, Haruka Hattori, Takashi Nagao, Tohru Chiaki, Gen Fukushima, Hajime Harikane, Yuichi Hayashi, Kohei Hirai, Yutaka Kim, Ji Hoon Maseda, Michael V. Nagamine, Kentaro Shibuya, Takatoshi Sugahara, Yuma Yajima, Hidenobu Aoyama, Shohei Fujimoto, Seiji Fukushima, Keita Hatano, Shun Inoue, Akio K. Ishigaki, Tsuyoshi Kawasaki, Masahiro Kojima, Takashi Komiyama, Yutaka Koyama, Shuhei Koyama, Yusei Lee, Chien-Hsiu Matsumoto, Akinori Mawatari, Ken Moriya, Takashi J. Motohara, Kentaro Murai, Kai Nishigaki, Moka Onodera, Masato Ono, Yoshiaki Rauch, Michael Saito, Tomoki Sasaki, Rin Suzuki, Akihiro Takeuchi, Tsutomu T. Umeda, Hiroya Umemura, Masayuki Watanabe, Kuria Yabe, Kiyoto Zhang, Yechi Institute for Cosmic Ray Research The University of Tokyo 5-1-5 Kashiwanoha Chiba Kashiwa277-8582 Japan Department of Physics Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka Tokyo181-8588 Japan University of Tokyo Chiba Kashiwa277-8583 Japan Univ Lyon Univ Lyon1 ENS de Lyon CNRS Centre de Recherche Astrophysique de Lyon UMR5574 Saint-Genis-LavalF-69230 France Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology AtlantaGA30332 United States Department of Astronomy Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan European Southern Observatory Karl-Schwarzschild-Straße 2 Garching85748 Germany Observatoire de Genéve Université de Genéve 51 Ch. des Maillettes Versoix1290 Switzerland 650 North A'ohoku Place HiloHI96720 United States Research Center for Space and Cosmic Evolution Ehime University Bunkyo-cho 2-5 Ehime Matsuyama790-8577 Japan Center for Computational Sciences University of Tsukuba Ten-nodai 1-1-1 Tsukuba Ibaraki305-8577 Japan Department of Physics and Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom National Institute of Technology Ichinoseki College Hagisho Ichinoseki021-8511 Japan Astronomical Institute Tohoku University 6-3 Aoba Aramaki Aoba-ku Miyagi Sendai980-8578 Japan Department of Physics and Astronomy University of Notre Dame 225 Nieuwland Science Hall Notre DameIN46556 United States Astronomy Program Department of Physics and Astronomy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of SNU Astronomy Research Center Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of Department of Astronomy University of Wisconsin-Madison 475 N. Charter Street MadisonWI53706 United States Theoretical Astrophysics Department of Earth & Space S
We present kinematics of 6 local extremely metal-poor galaxies (EMPGs) with low metallicities (0.016 − 0.098 Z☉) and low stellar masses (104.7 − 107.6M☉). Taking deep medium-high resolution (R ∼ 7500) integral-fiel... 详细信息
来源: 评论
Bayesian group factor analysis with structured sparsity
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2016年 第1期17卷
作者: Kevin Murphy Bernhard Schölkopf Shiwen Zhao Chuan Gao Sayan Mukherjee Barbara E. Engelhardt Google MPI for Intelligent Systems Computational Biology and Bioinformatics Program Department of Statistical Science Duke University Durham NC Department of Statistical Science Duke University Durham NC Departments of Statistical Science Computer Science Mathematics Duke University Durham NC Department of Computer Science Center for Statistics and Machine Learning Princeton University Princeton NJ
Latent factor models are the canonical statistical tool for exploratory analyses of low-dimensional linear structure for a matrix of p features across n samples. We develop a structured Bayesian group factor analysis ... 详细信息
来源: 评论
Feature selection via dependence maximization
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2012年 第1期13卷
作者: Le Song Alex Smola Arthur Gretton Justin Bedo Karsten Borgwardt Computational Science and Engineering Georgia Institute of Technology Atlanta GA Yahoo! Research Santa Clara CA Gatsby Computational Neuroscience Unit London UK and Intelligent Systems Group Max Planck Institutes Tübingen Germany Statistical Machine Learning Program National ICT Australia Canberra ACT Australia and Australian National University Canberra ACT Australia Machine Learning and Computational Biology Research Group Max Planck Institutes Tübingen Germany
We introduce a framework for feature selection based on dependence maximization between the selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence Criterion. The key idea is ... 详细信息
来源: 评论
Correlation transmission of spiking neurons is boosted by synchronous input
收藏 引用
BMC Neuroscience 2011年 第1期12卷 1-2页
作者: Matthias Schultze-Kraft Markus Diesmann Moritz Helias Sonja Grün Machine Learning Group Berlin Institute of Technology Berlin Germany Laboratory for Computational Neurophysics RIKEN Brain Science Institute Wako City Japan Brain and Neural Systems Team RIKEN Computational Science Research Program Wako City Japan Institute of Neuroscience and Medicine (INM-6) Computational and Systems Neuroscience Research Center Jülich Germany Laboratory for Statistical Neuroscience RIKEN Brain Science Institute Wako City Japan
来源: 评论