咨询与建议

限定检索结果

文献类型

  • 19 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 27 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 12 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 3 篇 信息与通信工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 化学工程与技术
    • 2 篇 生物工程
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 生物医学工程(可授...
  • 14 篇 理学
    • 8 篇 数学
    • 4 篇 地球物理学
    • 4 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 大气科学
    • 1 篇 系统科学
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 2 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 2 篇 learning systems
  • 2 篇 support vector m...
  • 2 篇 galaxies
  • 2 篇 cost functions
  • 1 篇 cortical network
  • 1 篇 mixture models
  • 1 篇 dynamical system...
  • 1 篇 hilbert space
  • 1 篇 problem solving
  • 1 篇 statistics
  • 1 篇 kernel methods
  • 1 篇 large datasets
  • 1 篇 parameter expans...
  • 1 篇 bacteriophages
  • 1 篇 bayesian structu...
  • 1 篇 hilbert-schmidt ...
  • 1 篇 sparse and low-r...
  • 1 篇 learning algorit...
  • 1 篇 spectroscopic an...
  • 1 篇 contrastive lear...

机构

  • 4 篇 institute of ast...
  • 4 篇 astronomy progra...
  • 3 篇 the research cen...
  • 3 篇 department of ad...
  • 3 篇 department of ph...
  • 3 篇 institute for co...
  • 3 篇 theoretical astr...
  • 3 篇 informatics inst...
  • 3 篇 school of physic...
  • 3 篇 centre inria de ...
  • 3 篇 department of ph...
  • 3 篇 research center ...
  • 3 篇 niels bohr insti...
  • 3 篇 kitami institute...
  • 3 篇 waseda research ...
  • 3 篇 tübingen ai cent...
  • 3 篇 w. m. keck obser...
  • 3 篇 national astrono...
  • 3 篇 center for compu...
  • 3 篇 department of as...

作者

  • 5 篇 smola alex j.
  • 4 篇 vishwanathan s.v...
  • 3 篇 lee chien-hsiu
  • 3 篇 sasaki rin
  • 3 篇 komiyama yutaka
  • 3 篇 matsumoto akinor...
  • 3 篇 harikane yuichi
  • 3 篇 isobe yuki
  • 3 篇 ouchi masami
  • 3 篇 hattori takashi
  • 3 篇 koyama shuhei
  • 3 篇 hayashi kohei
  • 3 篇 zhang yechi
  • 3 篇 fukushima hajime
  • 3 篇 sugahara yuma
  • 3 篇 rauch michael
  • 3 篇 ono yoshiaki
  • 3 篇 le quoc v.
  • 3 篇 suzuki akihiro
  • 3 篇 kawasaki masahir...

语言

  • 24 篇 英文
  • 3 篇 其他
检索条件"机构=Statistical Machine Learning Program"
27 条 记 录,以下是11-20 订阅
排序:
Using two-stage conditional word frequency models to model word burstiness and motivating TF-IDF
Using two-stage conditional word frequency models to model w...
收藏 引用
11th International Conference on Artificial Intelligence and Statistics, AISTATS 2007
作者: Sunehag, Peter Statistical Machine Learning Program National ICT Australia Locked bag 8001 ACT 2601 Australia
Several authors have recently studied the problem of creating exchangeable models for natural languages that exhibit word burstiness. Word burstiness means that a word that has appeared once in a text should be more l...
来源: 评论
learning to rank with nonsmooth cost functions
收藏 引用
20th Annual Conference on Neural Information Processing Systems, NIPS 2006
作者: Burges, Christopher J.C. Ragno, Robert Viet Le, Quoc Microsoft Research One Microsoft Way Redmond WA 98052 United States Statistical Machine Learning Program NICTA ACT 2601 Australia
The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on the model scores only through the sorted order of the documents returned for a given query. Thus... 详细信息
来源: 评论
Hyperparameter learning for graph based semi-supervised learning algorithms  19
收藏 引用
20th Annual Conference on Neural Information Processing Systems, NIPS 2006
作者: Zhang, Xinhua Lee, Wee Sun Statistical Machine Learning Program National ICT Australia Canberra Australia CSL RSISE ANU Canberra Australia Department of Computer Science National University of Singapore 3 Science Drive 2 Singapore 117543 Singapore
Semi-supervised learning algorithms have been successfully applied in many applications with scarce labeled data, by utilizing the unlabeled data. One important category is graph based semi-supervised learning algorit... 详细信息
来源: 评论
Supervised feature selection via dependence estimation  07
Supervised feature selection via dependence estimation
收藏 引用
24th International Conference on machine learning, ICML 2007
作者: Song, Le Smola, Alex Gretton, Arthur Borgwardt, Karsten M. Bedo, Justin NICTA Statistical Machine Learning Program Canberra ACT 0200 Australia University of Sydney ANU MPI for Biological Cybernetics Spemannstr. 38 72076 Tübingen Germany LMU Department Institute for Computer Science Oettingenstr. 67 80538 München Germany
We introduce a framework for filtering features that employs the Hilbert-Schmidt Independence Criterion (HSIC) as a measure of dependence between the features and the labels. The key idea is that good features should ... 详细信息
来源: 评论
A dependence maximization view of clustering  07
A dependence maximization view of clustering
收藏 引用
24th International Conference on machine learning, ICML 2007
作者: Song, Le Smola, Alex Gretton, Arthur Borgwardt, Karsten M. NICTA Statistical Machine Learning Program Canberra ACT 0200 Australia University of Sydney ANU MPI for Biological Cybernetics Spemannstr. 38 72076 Tübingen Germany LMU Department Institute for Computer Science Oettingenstr. 67 80538 München Germany
We propose a family of clustering algorithms based on the maximization of dependence between the input variables and their cluster labels, as expressed by the Hilbert-Schmidt Independence Criterion (HSIC). Under this ... 详细信息
来源: 评论
learning to Rank with Nonsmooth Cost Functions  19
收藏 引用
19th International Conference on Neural Information Processing Systems, NIPS 2006
作者: Burges, Christopher J.C. Ragno, Robert Le, Quoc Viet Microsoft Research One Microsoft Way RedmondWA98052 United States Statistical Machine Learning Program NICTA ACT2601 Australia
The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on the model scores only through the sorted order of the documents returned for a given query. Thus... 详细信息
来源: 评论
Class prediction from time series gene expression profiles using dynamical systems kernels
Class prediction from time series gene expression profiles u...
收藏 引用
11th Pacific Symposium on Biocomputing 2006, PSB 2006
作者: Borgwardt, Karsten M. Vishwanathan, S.V.N. Kribgel, Hans-Peter Institute for Computer Science Ludwig-Maximilians-University Oettingenstr. 67 80538 Munich Germany Statistical Machine Learning Program National ICT Australia Canberra ACT 0200 Australia
We present a kernel-based approach to the classification of time series of gene expression profiles. Our method takes into account the dynamic evolution over time as well as the temporal characteristics of the data. M... 详细信息
来源: 评论
Simpler knowledge-based support vector machines  06
Simpler knowledge-based support vector machines
收藏 引用
23rd International Conference on machine learning, ICML 2006
作者: Le, Quoc V. Smola, Alex J. Gärtner, Thomas RSISE Australian National University 0200 ACT Australia Statistical Machine Learning Program National ICT Australia 0200 ACT Australia Fraunhofer AIS.KD Schloß Birlinghoven 53754 Sankt Augustin Germany
If appropriately used, prior knowledge can significantly improve the predictive accuracy of learning algorithms or reduce the amount of training data needed. In this paper we introduce a simple method to incorporate p... 详细信息
来源: 评论
learning to rank with nonsmooth cost functions  06
Learning to rank with nonsmooth cost functions
收藏 引用
Proceedings of the 19th International Conference on Neural Information Processing Systems
作者: Christopher J. C. Burges Robert Ragno Quoc Viet Le Microsoft Research One Microsoft Way Redmond WA Statistical Machine Learning Program NICTA Australia
The quality measures used in information retrieval are particularly difficult to optimize directly, since they depend on the model scores only through the sorted order of the documents returned for a given query. Thus...
来源: 评论
Hyperparameter learning for graph based semi-supervised learning algorithms  06
Hyperparameter learning for graph based semi-supervised lear...
收藏 引用
Proceedings of the 20th International Conference on Neural Information Processing Systems
作者: Xinhua Zhang Wee Sun Lee Statistical Machine Learning Program National ICT Australia Canberra Australia and CSL RSISE ANU Canberra Australia Department of Computer Science National University of Singapore Singapore
Semi-supervised learning algorithms have been successfully applied in many applications with scarce labeled data, by utilizing the unlabeled data. One important category is graph based semi-supervised learning algorit...
来源: 评论