咨询与建议

限定检索结果

文献类型

  • 33 篇 期刊文献
  • 24 篇 会议

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 36 篇 工学
    • 26 篇 计算机科学与技术...
    • 25 篇 软件工程
    • 10 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 7 篇 光学工程
    • 7 篇 信息与通信工程
    • 4 篇 电气工程
    • 4 篇 控制科学与工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 3 篇 化学工程与技术
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 水利工程
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
  • 31 篇 理学
    • 20 篇 数学
    • 11 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 8 篇 物理学
    • 4 篇 化学
    • 3 篇 系统科学
  • 10 篇 管理学
    • 7 篇 图书情报与档案管...
    • 2 篇 公共管理
  • 5 篇 医学
    • 4 篇 临床医学
    • 4 篇 公共卫生与预防医...
    • 2 篇 基础医学(可授医学...

主题

  • 4 篇 surveys
  • 4 篇 embeddings
  • 3 篇 generative adver...
  • 3 篇 machine learning
  • 3 篇 training
  • 2 篇 deep learning
  • 2 篇 hospitals
  • 2 篇 genetic algorith...
  • 2 篇 speech synthesis
  • 2 篇 data structures
  • 2 篇 recurrent neural...
  • 1 篇 internet of thin...
  • 1 篇 tissue
  • 1 篇 wearable device
  • 1 篇 data security
  • 1 篇 diffraction
  • 1 篇 random forest
  • 1 篇 clustering
  • 1 篇 ensemble learnin...
  • 1 篇 gait

机构

  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 stream data anal...
  • 10 篇 department of st...
  • 5 篇 novosibirsk stat...
  • 4 篇 department of st...
  • 3 篇 novosibirsk stat...
  • 2 篇 university of sc...
  • 2 篇 barcelona instit...
  • 2 篇 machine learning...
  • 2 篇 universidad pomp...
  • 2 篇 department of in...
  • 2 篇 center for mr re...
  • 2 篇 meshalkin nation...
  • 2 篇 fraunhofer mevis...
  • 2 篇 department of co...
  • 2 篇 stream data anal...
  • 2 篇 centre for biome...
  • 2 篇 diagnostic image...
  • 2 篇 department of ne...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 5 篇 pavlovskiy evgen...
  • 4 篇 evgeniy n. pavlo...
  • 3 篇 pavlovskiy evgen...
  • 2 篇 arne küderle
  • 2 篇 silvia del din
  • 2 篇 walter maetzler
  • 2 篇 kaile kacie
  • 2 篇 sheng leyuan
  • 2 篇 clemens becker
  • 2 篇 irene moulitsas
  • 2 篇 jürgen winkler
  • 2 篇 khazankin grigor...
  • 2 篇 godavarty anurad...
  • 2 篇 sobhan masrur
  • 2 篇 lars schwickert
  • 2 篇 anisoara parasch...

语言

  • 56 篇 英文
  • 1 篇 其他
检索条件"机构=Stream Data Analytics and Machine Learning laboratory"
57 条 记 录,以下是31-40 订阅
排序:
Sufficient dimension reduction for high-dimensional regression and low-dimensional embedding: tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on various methods for Sufficient Dimension Reduction (SDR). We cover these methods with both statistical high-dimensional regression perspective and machine learning approach for d... 详细信息
来源: 评论
Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for nonlinear dimensionality and feature extraction methods which are based on the Laplacian of graph of data. We first introduce adjacency matrix, definition of Laplacian matrix, a... 详细信息
来源: 评论
Unified Framework for Spectral Dimensionality Reduction, Maximum Variance Unfolding, and Kernel learning By Semidefinite Programming: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on unification of spectral dimensionality reduction methods, kernel learning by Semidefinite Programming (SDP), Maximum Variance Unfolding (MVU) or Semidefinite Embedding (SDE), and... 详细信息
来源: 评论
Could machine learning be used to approximate optimal building retrofit solutions with the use of easily accessible building data?  32
Could machine learning be used to approximate optimal buildi...
收藏 引用
32nd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2019
作者: Thrampoulidis, Emmanouil Mavromatidis, Georgios Lucchi, Aurelien Orehounig, Kristina Laboratory for Urban Energy Systems Empa Duebendorf Switzerland ETH Zurich Switzerland Institute for Machine Learning Data analytics lab ETH Zurich Switzerland
Building retrofit is of greatest importance to reduce the environmental footprint of the building stock. It typically refers to two types of interventions: the first pertaining to interventions on the building envelop... 详细信息
来源: 评论
Problems and Prospectives of Big data Storage and Processing Standartization
Problems and Prospectives of Big Data Storage and Processing...
收藏 引用
IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON
作者: Evgeniy N. Pavlovskiy Stream Data Analytics and Machine Learning lab Novosibirsk State University Novosibirsk Russia
In the paper, we analyze the problem of standardization in the domain of storage and processing of big data in the application to the Internet of things. We highlight the underlying problems of big data; analyze the s... 详细信息
来源: 评论
Reducing over-smoothness in speech synthesis using Generative Adversarial Networks
Reducing over-smoothness in speech synthesis using Generativ...
收藏 引用
IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON
作者: Leyuan Sheng Evgeniy N. Pavlovskiy Novosibirsk State University Novosibirsk Russia Stream Data Analytics and Machine Learning laboratory Novosibirsk State University Novosibirsk Russia
Speech synthesis is widely used in many practical applications. In recent years, speech synthesis technology has developed rapidly. However, one of the reasons why synthetic speech is unnatural is that it often has ov... 详细信息
来源: 评论
ICDAR 2021 competition on on-line signature verification
arXiv
收藏 引用
arXiv 2021年
作者: Tolosana, Ruben Vera-Rodriguez, Ruben Gonzalez-Garcia, Carlos Fierrez, Julian Rengifo, Santiago Morales, Aythami Ortega-Garcia, Javier Ruiz-Garcia, Juan Carlos Romero-Tapiador, Sergio Jiang, Jiajia Lai, Songxuan Jin, Lianwen Zhu, Yecheng Galbally, Javier Diaz, Moises Ferrer, Miguel Angel Gomez-Barrero, Marta Hodashinsky, Ilya Sarin, Konstantin Slezkin, Artem Bardamova, Marina Svetlakov, Mikhail Saleem, Mohammad Szücs, Cintia Lia Kovari, Bence Pulsmeyer, Falk Wehbi, Mohamad Zanca, Dario Ahmad, Sumaiya Mishra, Sarthak Jabin, Suraiya Biometrics and Data Pattern Analytics Lab UAM Spain South China University of Technology China Guangdong Artificial Intelligence and Digital Economy Laboratory China European Commission Joint Research Centre Italy Universidad del Atlantico Medio Spain Universidad de las Palmas de Gran Canaria Spain Hochschule Ansbach Germany Tomsk State University of Control Systems and Radioelectronics Russia Budapest University of Technology and Economics Hungary Machine Learning and Data Analytics Lab FAU Germany Jamia Millia Islamia India
This paper describes the experimental framework and results of the ICDAR 2021 Competition on On-Line Signature Verification (SVC 2021). The goal of SVC 2021 is to evaluate the limits of on-line signature verification ... 详细信息
来源: 评论
Multidimensional scaling, Sammon mapping, and Isomap: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Multidimensional Scaling (MDS) is one of the first fundamental manifold learning methods. It can be categorized into several methods, i.e., classical MDS, kernel classical MDS, metric MDS, and non-metric MDS. Sammon m... 详细信息
来源: 评论
Simple unsupervised keyphrase extraction using sentence embeddings  22
Simple unsupervised keyphrase extraction using sentence embe...
收藏 引用
22nd Conference on Computational Natural Language learning, CoNLL 2018
作者: Bennani-Smires, Kamil Musat, Claudiu Hossmann, Andreaa Baeriswyl, Michael Jaggi, Martin Data Analytics and AI Swisscom AG Switzerland Machine Learning and Optimization Laboratory EPFL Switzerland
Keyphrase extraction is the task of automatically selecting a small set of phrases that best describe a given free text document. Supervised keyphrase extraction requires large amounts of labeled training data and gen... 详细信息
来源: 评论
Stochastic Neighbor Embedding with Gaussian and Student-t Distributions: Tutorial and Survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Stochastic Neighbor Embedding (SNE) is a manifold learning and dimensionality reduction method with a probabilistic approach. In SNE, every point is consider to be the neighbor of all other points with some probabilit... 详细信息
来源: 评论