咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 27 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 8 篇 光学工程
    • 4 篇 机械工程
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 控制科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 23 篇 理学
    • 17 篇 物理学
    • 4 篇 数学
    • 4 篇 化学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 12 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 8 篇 convolution
  • 4 篇 distillation
  • 3 篇 image reconstruc...
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 image segmentati...
  • 2 篇 vectors
  • 2 篇 noise
  • 2 篇 trajectory
  • 2 篇 pixels
  • 2 篇 transforms
  • 2 篇 computer vision
  • 2 篇 color
  • 1 篇 conferences
  • 1 篇 comparing
  • 1 篇 datasets
  • 1 篇 recognition (psy...
  • 1 篇 semantic segment...
  • 1 篇 compressed sensi...
  • 1 篇 mean absolute er...

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 14 篇 university of ch...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 5 篇 shenzhen key lab...
  • 5 篇 the chinese univ...
  • 5 篇 university of ma...
  • 4 篇 shanghai jiao to...
  • 4 篇 siat branch shen...
  • 4 篇 arc lab tencent ...
  • 3 篇 shanghai ai lab
  • 3 篇 institute of med...
  • 3 篇 state key labora...
  • 3 篇 national univers...

作者

  • 22 篇 qiao yu
  • 13 篇 wang yali
  • 10 篇 dong chao
  • 8 篇 chen xiangyu
  • 8 篇 yu qiao
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 gu jinjin
  • 5 篇 li kunchang
  • 5 篇 liu jianzhuang
  • 5 篇 ren jimmy s.
  • 4 篇 chen shifeng
  • 4 篇 liu jianbo
  • 4 篇 tang xiaoou
  • 3 篇 gao peng
  • 3 篇 song guanglu
  • 3 篇 liu xina
  • 3 篇 li zheyuan
  • 3 篇 hu jinfan

语言

  • 51 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Student at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition"
54 条 记 录,以下是1-10 订阅
LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Boyu Yue, Zhengrong Chen, Siran Wang, Zikang Liu, Yang Li, Peng Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tsinghua University Beijing China Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine... 详细信息
来源: 评论
Revisiting the Generalization Problem of Low-level vision Models Through the Lens of Image Deraining
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Jinfan You, Zhiyuan Gu, Jinjin Zhu, Kaiwen Xue, Tianfan Dong, Chao Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China The Chinese University of Hong Kong 999077 Hong Kong The University of Sydney NSW2006 Australia Shanghai Jiao Tong University Shanghai200240 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shenzhen University of Advanced Technology Shenzhen518055 China
Generalization remains a significant challenge for low-level vision models, which often struggle with unseen degradations in real-world scenarios despite their success in controlled benchmarks. In this paper, we revis... 详细信息
来源: 评论
Tile selection method based on error minimization for photomosaic image creation
收藏 引用
Frontiers of computer Science 2021年 第3期15卷 165-172页
作者: Hongbo ZHANG Xin GAO Jixiang DU Qing LEI Lijie YANG Department of Computer Science and Technology Huaqiao UniversityXiamen 361021China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao UniversityXiamen 361021China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao UniversityXiamen 361021China School of Computer Science and Technology Harbin Institute of TechnologyShenzhen 518055China
Photomosaic images are composite images composed of many small images called *** its overall visual effect,a photomosaic image is similar to the target image,and photomosaics are also called“montage art”.Noisy block... 详细信息
来源: 评论
Automatic motion-guided video stylization and personalization  11
Automatic motion-guided video stylization and personalizatio...
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Cao, Chen Chen, Shifeng Zhang, Wei Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong
Video stylization transfers a source video into an artistic version while maintaining temporal coherence between adjacent frames. In this paper, we formulate the unsupervised example-based video stylization with Marko... 详细信息
来源: 评论
Edge-preserving single image super-resolution  11
Edge-preserving single image super-resolution
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Zhou, Qiang Chen, Shifeng Liu, Jianzhuang Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong
This paper proposes a novel approach to single image super-resolution. First, an image up-sampling scheme is proposed which takes the advantages of both bilateral filtering and mean shift image segmentation. Then we u... 详细信息
来源: 评论
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
Efficient Image Super-Resolution Using Vast-Receptive-Field Attention  17th
Efficient Image Super-Resolution Using Vast-Receptive-Field ...
收藏 引用
17th European Conference on computer vision, ECCV 2022
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen China Shanghai AI Laboratory Shanghai China The University of Sydney Sydney Australia University of Macau Zhuhai China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
Rapid disparity prediction for dynamic scenes
Rapid disparity prediction for dynamic scenes
收藏 引用
9th International Symposium on Advances in Visual Computing, ISVC 2013
作者: Jiang, Jun Cheng, Jun Chen, Baowen Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Chinese University of Hong Kong Hong Kong Hong Kong Shsenzhen Institute of Information Technology China Guangdong Provincial Key Laboratory of Robotics and Intelligent System China Shenzhen Key Laboratory of Computer Vision and Pattern Recognition China
Real-time 3D sensing plays a critical role in robotic navigation, video surveillance and human-computer interaction, etc. When computing 3D structures of dynamic scenes from stereo sequences, spatiotemporal stereo and... 详细信息
来源: 评论
Automatic object segmentation from large scale 3D urban point clouds through manifold embedded mode seeking  11
Automatic object segmentation from large scale 3D urban poin...
收藏 引用
19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
作者: Yu, Zhiding Xu, Chunjing Liu, Jianzhuang Au, Oscar C. Tang, Xiaoou Shenzhen Key Laboratory for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Electronic and Computer Engineering Hong Kong University of Science and Technology Hong Kong Department of Information Engineering Chinese University of Hong Kong Hong Kong
This paper presents a system that can automatically segment objects in large scale 3D point clouds obtained from urban ranging images. The system consists of three steps: The first one involves a ground detection proc... 详细信息
来源: 评论