咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 27 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 8 篇 光学工程
    • 4 篇 机械工程
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 控制科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 23 篇 理学
    • 17 篇 物理学
    • 4 篇 数学
    • 4 篇 化学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 12 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 8 篇 convolution
  • 4 篇 distillation
  • 3 篇 image reconstruc...
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 image segmentati...
  • 2 篇 vectors
  • 2 篇 noise
  • 2 篇 trajectory
  • 2 篇 pixels
  • 2 篇 transforms
  • 2 篇 computer vision
  • 2 篇 color
  • 1 篇 conferences
  • 1 篇 comparing
  • 1 篇 datasets
  • 1 篇 recognition (psy...
  • 1 篇 semantic segment...
  • 1 篇 compressed sensi...
  • 1 篇 mean absolute er...

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 14 篇 university of ch...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 5 篇 shenzhen key lab...
  • 5 篇 the chinese univ...
  • 5 篇 university of ma...
  • 4 篇 shanghai jiao to...
  • 4 篇 siat branch shen...
  • 4 篇 arc lab tencent ...
  • 3 篇 shanghai ai lab
  • 3 篇 institute of med...
  • 3 篇 state key labora...
  • 3 篇 national univers...

作者

  • 22 篇 qiao yu
  • 13 篇 wang yali
  • 10 篇 dong chao
  • 8 篇 chen xiangyu
  • 8 篇 yu qiao
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 gu jinjin
  • 5 篇 li kunchang
  • 5 篇 liu jianzhuang
  • 5 篇 ren jimmy s.
  • 4 篇 chen shifeng
  • 4 篇 liu jianbo
  • 4 篇 tang xiaoou
  • 3 篇 gao peng
  • 3 篇 song guanglu
  • 3 篇 liu xina
  • 3 篇 li zheyuan
  • 3 篇 hu jinfan

语言

  • 51 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Student at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition"
54 条 记 录,以下是11-20 订阅
排序:
OSRT: Omnidirectional Image Super-Resolution with Distortion-aware Transformer
OSRT: Omnidirectional Image Super-Resolution with Distortion...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Fanghua Yu Xintao Wang Mingdeng Cao Gen Li Ying Shan Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences ARC Tencent PCG The University of Tokyo Platform Technologies Tencent Online Video Shanghai Artificial Intelligence Laboratory
Omnidirectional images (ODIs) have obtained lots of research interest for immersive experiences. Although ODIs require extremely high resolution to capture details of the entire scene, the resolutions of most ODIs are...
来源: 评论
IFAST: Weakly Supervised Interpretable Face Anti-spoofing from Single-shot Binocular NIR Images
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Jiancheng Zhou, Donghao Chen, Shifeng ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing China Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China The Chinese University of Hong Kong Hong Kong
Single-shot face anti-spoofing (FAS) is a key technique for securing face recognition systems, and it requires only static images as input. However, single-shot FAS remains a challenging and under-explored problem due... 详细信息
来源: 评论
DeSRA: Detect and Delete the Artifacts of GAN-based Real-World Super-Resolution Models
arXiv
收藏 引用
arXiv 2023年
作者: Xie, Liangbin Wang, Xintao Chen, Xiangyu Li, Gen Shan, Ying Zhou, Jiantao Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China ARC Lab Tencent PCG China Shanghai Artificial Intelligence Laboratory China Platform Technologies China
Image super-resolution (SR) with generative adversarial networks (GAN) has achieved great success in restoring realistic details. However, it is notorious that GAN-based SR models will inevitably produce unpleasant an... 详细信息
来源: 评论
Masked Image Training for Generalizable Deep Image Denoising
Masked Image Training for Generalizable Deep Image Denoising
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Haoyu Chen Jinjin Gu Yihao Liu Salma Abdel Magid Chao Dong Qiong Wang Hanspeter Pfister Lei Zhu The Hong Kong University of Science and Technology (Guangzhou) Shanghai AI Lab The University of Sydney ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences Harvard University Guangdong Provincial Key Laboratory of Computer Vision and Virtual Reality Technology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The Hong Kong University of Science and Technology
When capturing and storing images, devices inevitably introduce noise. Reducing this noise is a critical task called image denoising. Deep learning has become the de facto method for image denoising, especially with t...
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Xiangyu Wang, Xintao Zhou, Jiantao Qiao, Yu Dong, Chao State Key Laboratory of Internet of Things for Smart City University of Macau China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shanghai Artificial Intelligence Laboratory China ARC Lab Tencent PCG China
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information... 详细信息
来源: 评论
LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Boyu Yue, Zhengrong Chen, Siran Wang, Zikang Liu, Yang Li, Peng Wang, Yali Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China Tsinghua University Beijing China Dept. of Comp. Sci. & Tech. Institute for AI Tsinghua University Beijing China Shanghai Artificial Intelligence Laboratory China Shanghai Jiao Tong University China
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine... 详细信息
来源: 评论
Efficient Image Super-Resolution using Vast-Receptive-Field Attention
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China The University of Sydney Australia University of Macau China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
Blueprint Separable Residual Network for Efficient Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Macau China Shanghai AI Laboratory Shanghai China The University of Sydney Australia
Recent advances in single image super-resolution (SISR) have achieved extraordinary performance, but the computational cost is too heavy to apply in edge devices. To alleviate this problem, many novel and effective so... 详细信息
来源: 评论
Revisiting the Generalization Problem of Low-level vision Models Through the Lens of Image Deraining
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Jinfan You, Zhiyuan Gu, Jinjin Zhu, Kaiwen Xue, Tianfan Dong, Chao Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China The Chinese University of Hong Kong 999077 Hong Kong The University of Sydney NSW2006 Australia Shanghai Jiao Tong University Shanghai200240 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shenzhen University of Advanced Technology Shenzhen518055 China
Generalization remains a significant challenge for low-level vision models, which often struggle with unseen degradations in real-world scenarios despite their success in controlled benchmarks. In this paper, we revis... 详细信息
来源: 评论
Low-Resolution Action recognition for Tiny Actions Challenge
arXiv
收藏 引用
arXiv 2022年
作者: Chen, Boyu Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Tiny Actions Challenge focuses on understanding human activities in real-world surveillance. Basically, there are two main difficulties for activity recognition in this scenario. First, human activities are often reco... 详细信息
来源: 评论