咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 54 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 27 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 16 篇 信息与通信工程
    • 8 篇 光学工程
    • 4 篇 机械工程
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 生物工程
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 控制科学与工程
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 安全科学与工程
  • 23 篇 理学
    • 17 篇 物理学
    • 4 篇 数学
    • 4 篇 化学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 12 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 8 篇 convolution
  • 4 篇 distillation
  • 3 篇 image reconstruc...
  • 2 篇 hidden markov mo...
  • 2 篇 generative adver...
  • 2 篇 image segmentati...
  • 2 篇 vectors
  • 2 篇 noise
  • 2 篇 trajectory
  • 2 篇 pixels
  • 2 篇 transforms
  • 2 篇 computer vision
  • 2 篇 color
  • 1 篇 conferences
  • 1 篇 comparing
  • 1 篇 datasets
  • 1 篇 recognition (psy...
  • 1 篇 semantic segment...
  • 1 篇 compressed sensi...
  • 1 篇 mean absolute er...

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 14 篇 university of ch...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 5 篇 shenzhen key lab...
  • 5 篇 the chinese univ...
  • 5 篇 university of ma...
  • 4 篇 shanghai jiao to...
  • 4 篇 siat branch shen...
  • 4 篇 arc lab tencent ...
  • 3 篇 shanghai ai lab
  • 3 篇 institute of med...
  • 3 篇 state key labora...
  • 3 篇 national univers...

作者

  • 22 篇 qiao yu
  • 13 篇 wang yali
  • 10 篇 dong chao
  • 8 篇 chen xiangyu
  • 8 篇 yu qiao
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 gu jinjin
  • 5 篇 li kunchang
  • 5 篇 liu jianzhuang
  • 5 篇 ren jimmy s.
  • 4 篇 chen shifeng
  • 4 篇 liu jianbo
  • 4 篇 tang xiaoou
  • 3 篇 gao peng
  • 3 篇 song guanglu
  • 3 篇 liu xina
  • 3 篇 li zheyuan
  • 3 篇 hu jinfan

语言

  • 51 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Student at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition"
54 条 记 录,以下是21-30 订阅
排序:
UDC-UNet: Under-Display Camera Image Restoration via U-shape Dynamic Network
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Xina Hu, Jinfan Chen, Xiangyu Dong, Chao Shenzhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shanghai China University of Chinese Academy of Sciences Shanghai China University of Macau Shanghai China Shanghai AI Laboratory Shanghai China
Under-Display Camera (UDC) has been widely exploited to help smartphones realize full-screen displays. However, as the screen could inevitably affect the light propagation process, the images captured by the UDC syste... 详细信息
来源: 评论
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
Digging into Uncertainty in Self-supervised Multi-view Stereo
Digging into Uncertainty in Self-supervised Multi-view Stere...
收藏 引用
International Conference on computer vision (ICCV)
作者: Hongbin Xu Zhipeng Zhou Yali Wang Wenxiong Kang Baigui Sun Hao Li Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Alibaba Group Pazhou Laboratory Shanghai AI Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Cross Domain Object Detection by Target-Perceived Dual Branch Distillation
arXiv
收藏 引用
arXiv 2022年
作者: He, Mengzhe Wang, Yali Wu, Jiaxi Wang, Yiru Li, Hanqing Li, Bo Gan, Weihao Wu, Wei Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China SenseTime Research University of Chinese Academy of Science China Shanghai AI Laboratory Shanghai China Beihang University China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Cross domain object detection is a realistic and challenging task in the wild. It suffers from performance degradation due to large shift of data distributions and lack of instance-level annotations in the target doma... 详细信息
来源: 评论
Digging into uncertainty in self-supervised multi-view stereo
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Wang, Yali Kang, Wenxiong Sun, Baigui Li, Hao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Shanghai AI Laboratory Alibaba Group Pazhou Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论
Dual-AI: Dual-path Actor Interaction Learning for Group Activity recognition
arXiv
收藏 引用
arXiv 2022年
作者: Han, Mingfei Zhang, David Junhao Wang, Yali Yan, Rui Yao, Lina Chang, Xiaojun Qiao, Yu ReLER AAII UTS United States National University of Singapore Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China RMIT University Australia University of New South Wales Australia Shanghai AI Laboratory Shanghai China
Learning spatial-temporal relation among multiple actors is crucial for group activity recognition. Different group activities often show the diversified interactions between actors in the video. Hence, it is often di... 详细信息
来源: 评论
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论