The objectives of Human engineering (HE) are generally viewed as increasing human performance, reducing human error, enhancing personnel and equipment safety, and reducing training and related personnel costs. There a...
详细信息
The objectives of Human engineering (HE) are generally viewed as increasing human performance, reducing human error, enhancing personnel and equipment safety, and reducing training and related personnel costs. There are other benefits that are thoroughly consistent with the direction of the Navy of the future, chief among these is reduction of required numbers of personnel to operate and maintain Navy ships. The Naval Research Advisory Committee (NRAC) report on Man-Machine Technology in the Navy estimated that one of the benefits from increased application of man-machine technology to Navy ship design is personnel reduction as well as improving system availability, effectiveness, and safety The objective of this paper is to discuss aspects of the human engineering design of ships and systems that affect manning requirements, and impact human-performance and safety The paper will also discuss how the application of human engineering leads to improved performance, and crew safety, and reduced workload, all of which influence manning levels. Finally, the paper presents a discussion of tools and case studies of good human engineering design practices which reduce manning.
作者:
POND, LCLI, VOKCommunication Sciences
Electrical Engineering Systems University of Southern California Los Angeles CA 90089-2565 U.S.A. Lawrence C. Pond received the M.Sc. and Ph.D. degrees in electrical engineering from the University of Southern California in 1983 and 1990
respectively. Dr. Pond is currently a scientist at Hughes Space and Communications Company having joined in 1980. He has worked in the fields of communication system design mobile communication network and spacecraft payload design. He is currently working on the development of satellite-based ATM transport and switching architectures for BISDN and Defense Information System Network amlications. Dr. Pond is a member of IEEE. Victor O. K. Li was born in Hong Kong in 1954. He received his SB
SM and Sc.D. degrees in Electrical Engineering and Computer Science from the Massachusetts Institute of Technology Cambridge Massachusetts in 1977 1979 and 1981 respectively. Since February 1981 he has been with the University of Southern California (USC) LOS Angeles California where he is Professor of Electrical Engineering and Director of the USC Communication Sciences Institute. He has published 150 technical papers and has lectured and consulted extensively around the world. His research interests include high-speed communication networks personal communication networks intelligent networks distributed databases queueing theory graph theory and applied probability. Dr. Li is very active in the Institute of Electrical and Electronic Engineers (IEEE) having been a member of the Computer Communications Technical Committee since 1983 and having served as Chairman from 1987–1989. He served as Chairman of the Los Angeles Chapter of the IEEE Information Theory Group from 1983–1985. He is the Steering Committee Chair of the International Conference on Computer Communications and Networks (IC3 N) General Chair of the 1st Annual IC3N held in San Diego California in June 1992 General Chair and Technical Program Chair of the 4th IEEE Workshop on Comp
In this, the second part of a two-part paper, the required time for establishing a mobile packet radio network using the virtual circuit and time division multiple access protocol developed in Part 1 is analysed. Tool...
详细信息
In this, the second part of a two-part paper, the required time for establishing a mobile packet radio network using the virtual circuit and time division multiple access protocol developed in Part 1 is analysed. Tools are developed to determine the virtual circuit and network set-up times in terms of the channel bandwidth allocated to establish and maintain the network. The tools are then extended to include the effects of user mobility. Then these results are combined with the network capacity results of Part 1 to analyse the trade-off between the data rate and set-up time of the network. Next a hierarchical architecture is proposed and the network data rate versus set-up time trade-off of this architecture is analysed using these tools. This architecture is shown to both provide a higher data rate and establish faster than flat networks of the same number of nodes.
作者:
BOHM, SELHAKEEM, AKHACHICHA, MDepartment of Electrical and Computer Engineering
Concordia University 1455 De Maisonneuve Blvd. West Montreal H3A 1M8 Canada Was born in Montreal
Canada on 14 September 1966. He received the B. Eng. degree in electrical engineering from Concordia University Montreal Canada in 1989. He is at present completing the M.A.Sc. degree in electrical engineering at Concordia University. (S'75–S'79–M'79–SM'86) received the Ph.D. degree from Southern Methodist University
Dallas TX in 1979. He spent the next two years working as a Visiting Professor in Egypt after which he moved to Ottawa Canada in 1982. He assumed teaching and research positions in Carleton and Manitoba Univerities and later moved to Concordia University Montreal Canada in 1983 where he is now a Professor in the Electrical and Computer Engineering Department. He has published numerous papers in IEEE and international journals in the areas of spread spectrum and networking. He is a well-known expert in these areas and serves as a consultant to many companies. His current research interests include wide-band metropolitan networks switching architectures and performance of on-board multibeam satellites acquisitionless CDMA networks code distribution and orthogonalization of CDMA signals responsive congestion control for ATM-based networks ARQ techniques and investigation of the novel SUGAR CDMA systems in fading channels. Dr. Elhakeem is a Senior Member of the Canadian Electrical Engineering Society and Armed Forces Association. He has chaired numerous technical sessions in IEEE Conferences was the Technical Program Chairman for IEEE Montech 1986 Montreal Canada. Dr. Elhakeem is the key guest editor of theIEEE Journal of Selected Areas in Communicationsfor the May June issues 1993 covering CDMA networks. Advanced Technology & Networks
VISTAR Telecommunications Inc. Ottawa Ontario K1G 3J4 Canada An Associate Director of Advanced Technology & Networks Group
VISTAR Telecommunications Inc. Ottawa Canada. He is also an Adjunct Pr
In this paper, we study the performance of a prioritized on-board baseband switch in conjunction with a multibeam satellite handling integrated services. The services considered for the analysis include voice, video, ...
详细信息
In this paper, we study the performance of a prioritized on-board baseband switch in conjunction with a multibeam satellite handling integrated services. The services considered for the analysis include voice, video, file transfer and interactive data. The prioritized switch uses both input and output buffering, switch speed-up as well as a two-phase head-of-line resolution algorithm, in order to reduce the buffer loss while maintaining acceptable user delays. The minimum required buffer capacity and switch speed-up for each service in a prioritized environment are found under uniform traffic conditions. It is shown that under uniform traffic conditions, only minimal buffering and switch speed-up are needed even for the lowest priority users. The performance dependence on the switch size is also substantially reduced with head of line resolution and buffering even in a prioritized environment.
作者:
SHEA, JGThe Author:holds bachelor and master of engineering degrees in mechanical engineering
a M.Eng. in engineering management and is currently fulfilling requirements for the M.S. and Ph.D. degrees in computer science at the University of Louisville. He is employed as program manager Phalanx Advanced Engineering Development at the Naval Ordnance Station Crane Div. NavSurfWarCen Louisville Ky. During his tenure with Phalanx Mr. Shea has contributed to system reliability improvement system performance upgrading and the development of the Phalanx HOL (RISC) Computer. Mr. Shea is a member of ASNE the Institute of Electrical and Electronics Engineers American Institute of Aeronautics and Astronautics Society for Computer Simulation International Test & Evaluation Association and the Military Operations Research Society.
Knowledge-based modeling and simulation bridges the gap between ''conventional'' artificial intelligence implementations (such as expert systems) and more traditional computer-aided design techniques. ...
Knowledge-based modeling and simulation bridges the gap between ''conventional'' artificial intelligence implementations (such as expert systems) and more traditional computer-aided design techniques. We are currently developing software, whose primary function is to capture a user-input design specification and produce a ''virtual'' rapid prototvpe in the form of executable rule-based code. This code can then be exercised either as an interactive part of a hardware-in-the-loop testbed simulator or as a component of an object-oriented ''behavioral'' simulation environment. While the Phalanx Testbed is the immediate beneficiary of this work, the techniques described have a wide range of application in the modeling of conceptual design and performance characteristics. This paper describes the system architecture and software tools that we are applying to generate virtual rapid prototypes for use in the Phalanx Testbed. Particular attention is paid to defining the intelligent knowledge-capture mechanisms and model generation methodologies that we are using to translate design knowledge and performance requirements into rule-based simulations. The object-oriented programming approach to the merging of ''new'' data with previouslv-captured and stored data is discussed, and the issues of verifying and validating prototypes generated using such partiallv ''reengineered'' models are examined. An application currently in use as an investigative prototype for testbed development, a simple position controller servomechanism used to control the azimuth angle of a target-tracking sensor, is used to illustrate the process.
作者:
VINROOT, CAORNER, JGUSNCapt. Charles A. Vinroot
USN (Ret.)retired from the U.S. Navy in September 1991 following over 27 years of active duty as an engineering duty officer. He holds a BSEE from North Carolina State University and a MSEE and professional degree from the U.S. Naval Postgraduate School. During his naval career he served on USSIndependence (CVA-62) and USSLuce (DLC-7/DDC-38). He also served at Supship Quincy Mass. and Hunters Point Naval Shipyard. He was stationed in Washington D.C. with assignments at CNO (OP 98) ASN (S&L) and the Naval Sea Systems Command. Captain Vinroot was technical director of the Battleship Reactivation Program (PMS 378) technical director of the Destroyer Acquisition Program (PMS 389) and deputy program manager of the Amphibious Warfare and Strategic Sealift Program (PMS 377). Most recently he served as program manager for Gas Turbine Surface Combatants (PMS 314) and Surface Combatants (PMS 330). Captain Vinroot is now employed by PRC Inc. and serves as technical director for the Advanced Technology Division in Crystal City Va. Jeffery G. Ornergraduated from Wittenberg University in Springfield
Ohio in 1979 with a bachelor of arts degree in political science and earned a master's of science degree in business from The American University in Washington D.C. in 1982. He has ten years of professional experience with the Naval Sea Systems Command in positions with responsibilities for logistic support planning policy and delivery computer-aided acquisition and logistic support and Fleet Modernization Program (FMP) and ship construction issues. He was a key player in establishing the current FMP integrated logistic support (ILS) process and in implementing of the Ships' Configuration and Logistic Support Information System (SCLSIS). His current position as Fleet Logistic Support Branch head for the Surface Combatant Program includes responsibility for logistic support and management of ship configuration and logistic data for all surface combatant ships (except for Aegis ships). In
USS Ingraham (FFG-61) is the prototype ship for NavSea's Advanced Technical Information system (ATIS). ATIS is a digital technical library, which holds on optical disks the ship's 2,000 technical manuals and 7...
详细信息
USS Ingraham (FFG-61) is the prototype ship for NavSea's Advanced Technical Information system (ATIS). ATIS is a digital technical library, which holds on optical disks the ship's 2,000 technical manuals and 73,000 drawing sheets. It contains a detailed ship's configuration index (derived from SCLSIS) to lead the user to the proper drawing or manual, and it replaces the ship's aperture cards and the second (library) copy of the technical manuals. ATIS, and the data standards established and tested through ATIS development, will be the technical library portion of micro-SNAP and SNAP III. It also forms an important part of NavSea's plans to utilize EDMICS data. This paper describes the goals and technical concepts behind the development of ATIS. Problems encountered, solutions developed, and lessons learned are detailed. Special attention was paid to the application of the computer Aided Acquisition and Logistic Support (CALS) standards, problems caused by conflicts and ambiguities in those standards, the standards. Original program goals are compared with actual operational experiences. Plans for future expansion are outlined, including applications of this technology in the availability planning and execution process. A comparison is developed among the various methods of optical imaging and their costs and benefits.
Blind equalization of systems which contain a nonminimum phase component is a difficult task. Minimizing the energy (l/sub 2/ minimization) of the equalizer output (under a fixed tap constraint) cannot be guaranteed t...
详细信息
Blind equalization of systems which contain a nonminimum phase component is a difficult task. Minimizing the energy (l/sub 2/ minimization) of the equalizer output (under a fixed tap constraint) cannot be guaranteed to open the eye (to reliably unscramble the message) because it tends to converge to an equalizer setting that contains a reflection of the unstable zeros inside the unit circle. It is shown that, in at least one simple setup involving a mixture of minimum and nonminimum phase elements, an l/sub infinity / minimization of the equalizer output is the appropriate criterion which should be minimized in order to successfully open the eye. Utilizing a finite impulse response equalizer constrained to have a unity coefficient on the center tap, it is shown that for a large enough dimension (depending on the closeness of the zeros of the channel to the unit circle) the eye will be opened. There is no simple (gradient) scheme to exactly implement the l/sub infinity / minimization. The use of a gradient l/sub p/ scheme for large p is proposed.< >
作者:
NARAYANAN, VMANELA, MLADE, RKSARKAR, TKDepartment of Electrical and Computer Engineering
Syracuse University Syracuse New York 13244-1240 Viswanathan Narayanan was born in Bangalore
India on December 14 1965. He received the BE degree in Electronics and Communications from B.M.S. College of Engineering Bangalore in 1988. He joined the Department of Electrical Engineering at Syracuse University for his graduate studies in 1989 where he is currently a research assistant. His research interests are in microwave measurements numerical electromagnetics and signal processing. Biographies and photos are not available for M. Manela and R. K. Lade.Tapan K. Sarkar (Sf69-M'76-SM'X1) was born in Calcutta. India
on August 2 1948. He received the BTech degree from the Indian Institute of Technology Kharagpur India in 1969 the MScE degree from the University of New Brunswick Fredericton Canada in 1971. and the MS and PhD degrees from Syracuse University. Syracuse NY in 1975. From 1975-1976 he was with the TACO Division of the General Instruments Corporation. He was with the Rochester Institute of Technology (Rochester NY) from 1976-1985. He was a Research Fellow at the Gordon Mckay Laboratory Harvard University Cambridge MA from 1977 to 1978. He is now a Professor in the Department of Electrical and Computer Engineering Syracuse University. His current research interests deal with numerical solutions of operator equations arising in electromagnetics and signal processing with application to system design. He obtained one of the “ best solution” awards in May 1977 at the Rome Air Development Center (RADC) Spectral Estimation Workshop. He has authored or coauthored more than 154 journal articles and conference papers and has written chapters in eight books. Dr. Sarkar is a registered professional engineer in the state of New York. He received the Best Paper Award of the IEEE Transactions on Electromagnetic Compatibility in 1979. He was an Associate Editor for feature articles of the lEEE Antennas arid Propagation Sociefy Newsletter and was
Dynamic analysis of waveguide structures containing dielectric and metal strips is presented. The analysis utilizes a finite difference frequency domain procedure to reduce the problem to a symmetric matrix eigenvalue...
详细信息
Dynamic analysis of waveguide structures containing dielectric and metal strips is presented. The analysis utilizes a finite difference frequency domain procedure to reduce the problem to a symmetric matrix eigenvalue problem. Since the matrix is also sparse, the eigenvalue problem can be solved quickly and efficiently using the conjugate gradient method resulting in considerable savings in computer storage and time. Comparison is made with the analytical solution for the loaded dielectric waveguide case. For the microstrip case, we get both waveguide modes and quasi-TEM modes. The quasi-TEM modes in the limit of zero frequency are checked with the static analysis which also uses finite difference. Some of the quasi-TEM modes are spurious. This article describes their origin and discusses how to eliminate them. Numerical results are presented to illustrate the principles.
作者:
KING, JFBARTON, DEJ. Fred King:is the manager of the Advanced Technology Department for Unisys in Reston
Virginia. He earned his Ph.D. in mathematics from the University of Houston in 1977. He has been principal investigator of research projects in knowledge engineering pattern recognition and heuristic problem-solving. Efforts include the development of a multi-temporal multispectral classifier for identifying graincrops using LANDSAT satellite imagery data for NASA. Also as a member of the research team for a NCI study with Baylor College of Medicine and NASA he helped develop techniques for detection of carcinoma using multispectral microphotometer scans of lung tissue. He established and became technical director of the AI Laboratory for Ford Aerospace where he developed expert scheduling modeling and knowledge acquisition systems for NASA. Since joining Unisys in 1985 he has led the development of object-oriented programming environments blackboard architectures data fusion techniques using neural networks and intelligent data base systems. Douglas E. Barton:is manager of Logistics Information Systems for Unisys in Reston
Virginia. He earned his B.A. degree in computer science from the College of William and Mary in 1978 and did postgraduate work in London as a Drapers Company scholar. Since joining Unisys in 1981 his work has concentrated on program management and software engineering of large scale data base management systems and design and implementation of knowledge-based systems in planning and logistics. As chairman of the Logistics Data Subcommittee of the National Security Industrial Association (NSIA) he led an industry initiative which examined concepts in knowledge-based systems in military logistics. His responsibilities also include evaluation development and tailoring of software engineering standards and procedures for data base and knowledge-based systems. He is currently program manager of the Navigation Information Management System which provides support to the Fleet Ballistic Missile Progr
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several know...
详细信息
A valuable technique during concept development is rapid prototyping of software for key design components. This approach is particularly useful when the optimum design approach is not readily apparent or several known alternatives need to be rapidly evaluated. A problem inherent in rapid prototyping is the lack of a "target system" with which to interface. Some alternatives are to develop test driver libraries, integrate the prototype with an existing working simulator, or build one for the specific problem. This paper presents a unique approach to concept development using rapid prototyping for concept development and scenario-based simulation for concept verification. The rapid prototyping environment, derived from artificial intelligence technology, is based on a blackboard architecture. The rapid prototype simulation capability is provided through an object-oriented modeling environment. It is shown how both simulation and blackboard technologies are used collectively to rapidly gain insight into a tenacious problem. A specific example will be discussed where this approach was used to evolve the logic of a mission controller for an autonomous underwater vehicle.
作者:
ALLEN, DWVINOSKI, WSOVERTON, BADavid W. Allen:is a senior computer scientist at the Machinery Technology Division
Westinghouse Electric Corporation Large Pa. He received the B.A. degree in mathematics from Grinnell College and the M.S. degree in computer science from the University of Pittsburgh. His career with Westinghouse has been divided between assignments in engineering and computer applications. Mr. Allen has published eight technical papers. He received the George Westinghouse Signature A ward of Excellence for his work on the development of the GAGES computer program for designing propeller gages. He is a member of the Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers (IEEE). Walter S. Vinoski:is a project engineer at the Machinery Technology Division
Westinghouse Electric Corporation Large Pa. and was instrumental in the development of the GAGES computer program. He was awarded the George Westinghouse Signature Award of Excellence for his work on the GAGES program. Mr. Vinoski has six years of marine propulsion system experience specifically with propellers. He earned a B.S. degree in electronics engineering and minored in mathematics at the Ohio Institute of Technology. He is a member of the American Society of Naval Engineers. Bernard A. Overton:graduated from North Carolina Agricultural and Technical State University
Greensboro N.C. in 1958 with a B.S. degree in mechanical engineering. Within two years of joining the U.S. Army Mr. Overton was honorably discharged as a first lieutenant. Mr. Overton worked seven years at Philadelphia Naval Shipyard in the following areas: shafting shafting alignment bearing reactions noise and vibration surveys propellers and propeller blade gage designs. In 1967 Mr. Overton transferred to the Navy Engineering Center. He has worked on main propulsion devices such as water jets propellers (both submarine and surface ship) and propeller blade gages. Mr. Overton was responsible for the establishment of the Naval Inspectors Propeller Certif
One of the most complicated forms encountered in engineering design is that of the marine propeller. The complexities arise from the complicated hydrodynamic surfaces of the propeller blades and the complicated manner...
详细信息
One of the most complicated forms encountered in engineering design is that of the marine propeller. The complexities arise from the complicated hydrodynamic surfaces of the propeller blades and the complicated manner in which the blades are oriented with and attached to the hub. Where propeller blades are attached to the hub, the blade shape is blended into the shape of the hub. The geometry of this region is particularly complicated. The shape of the blend is called a fillet, and the blending region is called the fillet region. Sheet metal gages conforming to various blade surface contours are used in the manufacture and inspection of propellers. Five different types of gages define the shape of the propeller in different regions. Fillet gages are such gages that define the shape of propeller blades in the fillet region. This paper describes a new computer-aided method for designing fillet gages. Previous methods of fillet gage design required the designer to follow a complicated layout procedure of determining where a particular unfilleted blade contour intersected the hub. The design of the fillet was then done in another layout procedure. Newly developed numerical procedures incorporated in a computerprogram have reduced the time required to design a complete set of gages (including fillet gages) from up to several weeks to hours.
作者:
ZITZMAN, LHFALATKO, SMPAPACH, JLDr. Lewis H. Zitzman:is the group supervisor of the Advanced Systems Design Group
Fleet Systems Department The Johns Hopkins University Applied Physics Laboratory (JHU/APL). He has been employed at JHU/APL since 1972 performing applied research in computer science and in investigating and applying advanced computer technologies to Navy shipboard systems. He is currently chairman of Aegis Computer Architecture Data Bus and Fiber Optics Working Group from which many concepts for this paper were generated. Dr. Zitzman received his B.S. degree in physics from Brigham Young University in 1963 and his M.S. and Ph.D. degrees in physics from the University of Illinois in 1967 and 1972 respectively. Stephen M. Falatko:was a senior engineering analyst in the Combat Systems Engineering Department
Comptek Research Incorporated for the majority of this effort. He is currently employed at ManTech Services Corporation. During his eight-year career first at The Johns Hopkins University Applied Physics Laboratory and currently with ManTech Mr. Falatko's work has centered around the development of requirements and specifications for future Navy systems and the application of advanced technology to Navy command and control systems. He is a member of both the Computer Architecture Fiber Optics and Data Bus Working Group and the Aegis Fiber Optics Working Group. Mr. Falatko received his B.S. degree in aerospace engineering with high distinction from the University of Virginia in 1982 and his M.S. degree in applied physics from The Johns Hopkins University in 1985. Mr. Falatko is a member of Tau Beta Pi Sigma Gamma Tau the American Society of Naval Engineers and the U.S. Naval Institute. Janet L. Papach:is a section leader and senior engineering analyst in the Combat Systems Engineering Department
Comptek Research Incorporated. She has ten years' experience as an analyst supporting NavSea Spa War and the U.S. Department of State. She currently participates in working group efforts under Aegis Combat System Doctrin
This paper sets forth computersystems architecture concepts for the combat system of the 2010–2030 timeframe that satisfy the needs of the next generation of surface combatants. It builds upon the current Aegis comp...
详细信息
This paper sets forth computersystems architecture concepts for the combat system of the 2010–2030 timeframe that satisfy the needs of the next generation of surface combatants. It builds upon the current Aegis computersystems architecture, expanding that architecture while preserving, and adhering to, the Aegis fundamental principle of thorough systems engineering, dedicated to maintaining a well integrated, highly reliable, and easily operable combat system. The implementation of these proposed computersystems concepts in a coherent architecture would support the future battle force capable combat system and allow the expansion necessary to accommodate evolutionary changes in both the threat environment and the technology then available to effectively counter that threat. Changes to the current Aegis computer architecture must be carefully and effectively managed such that the fleet will retain its combat readiness capability at all times. This paper describes a possible transition approach for evolving the current Aegis computer architecture to a general architecture for the future. The proposed computersystems architecture concepts encompass the use of combinations of physically distributed, microprocessor-based computers, collocated with the equipment they support or embedded within the equipment itself. They draw heavily on widely used and available industry standards, including instruction set architectures (ISAs), backplane busses, microprocessors, computerprogramming languages and development environments, and local area networks (LANs). In this proposal, LANs, based on fiber optics, will provide the interconnection to support system expandability, redundancy, and higher data throughput rates. A system of cross connected LANs will support a high level of combat system integration, spanning the major warfare areas, and will facilitate the coordination and development of a coherent multi-warfare tactical picture supporting the future combatant command st
暂无评论