Key issues regarding the operation of the broadband integrated services digital network (BISDN) via satellite are presented herein. The specific issues, challenges, and their resolutions are detailed. In particular, t...
详细信息
Key issues regarding the operation of the broadband integrated services digital network (BISDN) via satellite are presented herein. The specific issues, challenges, and their resolutions are detailed. In particular, the impact of error characteristics and propagation delay on the operation of BISDN via satellite is discussed. Solutions are presented for removing adverse effects and providing high-quality service to users of BISDN via satellite.
Some of the techniques used in the development of a management information model (MIM) for Open systems Interconnection (OSI) management of systems network architecture (SNA) resources are examined. The identification...
详细信息
Some of the techniques used in the development of a management information model (MIM) for Open systems Interconnection (OSI) management of systems network architecture (SNA) resources are examined. The identification of object classes, cataloging of attributes of SNA objects, actions taken on SNA objects, notifications from SNA objects, and SNA class definitions used in the modeling of SNA are discussed. Some problem areas of modeling SNA using a MIM are reviewed.< >
As technology advances and our dependency on software increases, the requirement to develop the correct means to improve quality in both the deveiopment phase and the maintenance phase of software life cycle support b...
As technology advances and our dependency on software increases, the requirement to develop the correct means to improve quality in both the deveiopment phase and the maintenance phase of software life cycle support becomes increasingly significant. The focus of this paper is on the dilemma facing softwareengineering in maintaining quality within the constraints of the maintenance phase. The paper further proposes that the software maintenance process can also be analvzed and improved using statistical process control (SPC) techniques. The methods discussed in this paper have been proposed for use in the software Maintenance project at NUWC Detachment Norfolk. Upon successful testing at NUWC Detachment Norfolk, they will be forwarded to the AN/SQQ-89(V) (interagencv) software Quality Evaluation Committee for use by other agencies which are developing and maintaining AN/SQQ-89(V) software.
A small group of fault tolerance practitioners met in June, 1991, to attempt to identify how fault tolerance is being applied today, why fault tolerance is underused, and what can be done to bring fault tolerant pract...
详细信息
The Command Support At-Sea Experiment (CS@SE) provides experimental advanced graphics display systems consisting of large screen color displays and operator console color displays in the combat information center (CIC...
详细信息
The Command Support At-Sea Experiment (CS@SE) provides experimental advanced graphics display systems consisting of large screen color displays and operator console color displays in the combat information center (CIC) of an Aegis cruiser and in the tactical flag command center (TFCC) of an aircraft carrier. CS@SE systems are designed to prototype potential command support capabilities in an at-sea environment to validate and refine requirements for planned production system upgrades. These systems use sophisticated color graphics techniques to provide real-time tactical displays that improve the availability of information to an operator by reducing clutter through the use of color, area fill, transparen overlays and intensity coding of track symbols. Interfaces wen developed with the Aegis Display system (ADS), Shipboarc Gridlock system with Auto-correlation (SGS/AC), Flag Dats Display system (FDDS) and Tomahawk Engagement Planning and Exercise Evaluation system (TEPEE) that provided the data for the presentation of a tactical display. Display elements included both real-time and over-the-horizon (OTH) surface track data, velocity leaders, tags, uncertainty ellipses, and history trails. The display also included filled land masses, country boundaries, commercial airways, cities, graphics overlays (i.e., operational areas), weapon system missile performance contours, and engagement plans. This paper describes the experiment, its installation and integration into the shipboard environments of an Aegis cruiser (USS Leyte Gulf ) and an aircraft carrier (USS America , its usage by the ships companies and embarked staffs, and the experiment result! and findings. Key conclusions of the experiment are: 1 Advanced graphics color displays can significantly enhance the ability of the warfighter to assimilate a complex tactical display. 2 Both ships reported a requirement for a correlated OTH and real-time track display with the ability to clearly differentiate the two types
作者:
STERN, HMETZGER, RHoward K. Stern:is presently vice president of Robotic Vision Systems
Inc. He received a bachelor of electrical engineering degree from College of the City of New York in 1960. Mr. Stern joined Dynell Electronics Corporation in 1971 and became part of the Robotic Vision Systems
Inc. staff at the time of its spin-off from Dynell. He was program manager of the various three-dimensional sensing and replication systems constructed by Dynell and Robotic Vision Systems. As program manager his responsibilities encompassed technical administrative and operational areas. The first two portrait sculpture studio systems and the first three replication systems built by Robotic Vision Systems Inc. were designed manufactured and operated under his direction. Before joining Dynell
Mr. Stern was a senior engineer at Instrument Systems Corporation and chief engineer of the Special Products Division of General Instrument Corporation. Prior to these positions Mr. Stern was chief engineer of Edo Commercial Corporation. At General Instrument and Edo Commercial he was responsible for the design and manufacture of military and commercial avionics equipment. Mr. Stern is presently responsible for directing the systems design and development for all of the company's programs.Robert J. Metzger:is currently engineering group leader at Robotic Vision Systems
Inc. He graduated summa cum laude from the Cooper Union in 1972 with a bachelor of electrical engineering degree. Under sponsorship of a National Science Foundation graduate fellowship he graduated from the Massachusetts Institute of Technology in 1974 with the degrees of electrical engineer and master of science (electrical engineering). In 1979 Mr. Metzger graduated from Polytechnic Institute of New York with the degree of master of science (computer science). Since 1974
Mr. Metzger has been actively engaged in the design of systems and software for noncontact threedimensional optical measurement for both military and commercial applications. Of particular note are his c
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide in...
详细信息
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide increased accuracy, repeatability and cost effectiveness in propeller manufacture, an automated propeller optical measurement system (APOMS) has been built which rapidly and automatically scans an entire ship's propeller using a 3-D vision sensor. This equipment is integrated with a propeller robotic automated templating system (PRATS) and the propeller optical finishing system (PROFS) which robotically template and grind the propeller to its final shape, using the APOMS-derived data for control feedback. The optical scanning and the final shape are both controlled by CAD/CAM data files describing the desired propeller shape. An automated propeller balancing system is incorporated into the PROFS equipment. The APOMS/PRATS/PROFS equipment is expected to provide lower propeller manufacturing costs.
作者:
PAIGE, KKCONVERSE, RAUSNLCdr. Kathleen K. Paige
USN:graduated with a BA from the University of New Hampshire in 1970. She received her commission from Officer Candidate School in April 1971 and performed her first tour of duty with VFP-63 NAS Miramar. LCdr. Paige then received her MS from the Naval Post Graduate School in June 1976 and returned to San Diego to serve as Head Support Software Division at the Fleet Combat Direction System Support Activity. In May 1981 she reported to NA VSEA (PMS-408) where she served initially as Chairman of the NAVMAT Software Engineering Environment Working Group. She has been assigned as Deputy AN/UYK-43 Acquisition Manager since October 1981. LCdr. Paige was designated a fully qualified Engineering Duty Officer in December 1983. Robert A. Converse:is presently the Acquisition Manager for the Ada Language System/Navy (ALS/N) for the Naval Sea Systems Command Tactical Embedded Computer Resources Project. As such
he is responsible for the definition and development of the ALS/N to be provided as a Navy standard computer programming system for Navy mission critical applications. Mr. Converse received a Bachelor of Science degree in Physics from Wheaton College Wheaton II. He spent fourteen years with the Naval Underwater Systems Center Newport Rhode Island during which time he designed and developed the Fortran compiler for the Navy Standard AN/UYK-7 computer. Also during that period he received a Master of Science degree in Computer Science from the University of Rhode Island. His thesis for that degree was entitled “Optimization Techniques for the NUSC Fortran Cross-Compiler”. Mr. Converse started his involvement with the Ada program in 1975 with the initial “Strawman” requirements review. Subsequently he was named as the Navy Ada Distinguished Reviewer and was intimately involved in the selection and refinement of the Ada language as it evolved to become ANSI/MIL-STD-1815A.
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of co...
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of computer technology. Computers embedded in mission critical Navy systems are integral to our strategic and tactical defense capabilities. Thus, the military power of the U.S. Navy is inextricably tied to the use of programmable digital computers. The computer program is the essential element that embodies the system “intelligence”. In addition, it provides the flexibility to respond to changing threats and requirements. However, this very flexibility and capability poses a host of difficulties hindering full realization of the advantages. This paper describes the lessons learned about computer program development over the past twenty five years and discusses a softwareengineering process that addresses these lessons. It then describes how Ada and its related Ada Programming Support and Run-Time Environments foster this softwareengineering process to improve computer program productivity and achieve greater system reliability and adaptibility. Finally, the paper discusses how the use of Ada and its environments can enhance the interoperability and transferability of computer programs among Navy projects and significantly reduce overall life cycle costs for Navy mission critical computer programs.
暂无评论