Diabetes mellitus is one of the most common diseases affecting patients of different ages. Diabetes can be controlled if diagnosed as early as possible. One of the serious complications of diabetes affecting the retin...
详细信息
Disease outbreaks are nowadays a critical issue despite the development and rapid growth of technology. One of the major challenges facing healthcare professionals and healthcare industries is disease prevention and c...
详细信息
This paper proposes a hybrid Modified Coronavirus Herd Immunity Aquila Optimization Algorithm (MCHIAO) that compiles the Enhanced Coronavirus Herd Immunity Optimizer (ECHIO) algorithm and Aquila Optimizer (AO). As one...
详细信息
This paper proposes a hybrid Modified Coronavirus Herd Immunity Aquila Optimization Algorithm (MCHIAO) that compiles the Enhanced Coronavirus Herd Immunity Optimizer (ECHIO) algorithm and Aquila Optimizer (AO). As one of the competitive human-based optimization algorithms, the Coronavirus Herd Immunity Optimizer (CHIO) exceeds some other biological-inspired algorithms. Compared to other optimization algorithms, CHIO showed good results. However, CHIO gets confined to local optima, and the accuracy of large-scale global optimization problems is decreased. On the other hand, although AO has significant local exploitation capabilities, its global exploration capabilities are insufficient. Subsequently, a novel metaheuristic optimizer, Modified Coronavirus Herd Immunity Aquila Optimizer (MCHIAO), is presented to overcome these restrictions and adapt it to solve feature selection challenges. In this paper, MCHIAO is proposed with three main enhancements to overcome these issues and reach higher optimal results which are cases categorizing, enhancing the new genes’ value equation using the chaotic system as inspired by the chaotic behavior of the coronavirus and generating a new formula to switch between expanded and narrowed exploitation. MCHIAO demonstrates it’s worth contra ten well-known state-of-the-art optimization algorithms (GOA, MFO, MPA, GWO, HHO, SSA, WOA, IAO, NOA, NGO) in addition to AO and CHIO. Friedman average rank and Wilcoxon statistical analysis (p-value) are conducted on all state-of-the-art algorithms testing 23 benchmark functions. Wilcoxon test and Friedman are conducted as well on the 29 CEC2017 functions. Moreover, some statistical tests are conducted on the 10 CEC2019 benchmark functions. Six real-world problems are used to validate the proposed MCHIAO against the same twelve state-of-the-art algorithms. On classical functions, including 24 unimodal and 44 multimodal functions, respectively, the exploitative and explorative behavior of the hybrid
Harris Hawks optimization (HHO) algorithm was a powerful metaheuristic algorithm for solving complex problems. However, HHO could easily fall within the local minimum. In this paper, we proposed an improved Harris Haw...
详细信息
This paper considers the value iteration algorithms of stochastic zero-sum linear quadratic games with unkown ***-policy and off-policy learning algorithms are developed to solve the stochastic zero-sum games,where th...
详细信息
This paper considers the value iteration algorithms of stochastic zero-sum linear quadratic games with unkown ***-policy and off-policy learning algorithms are developed to solve the stochastic zero-sum games,where the system dynamics is not *** analyzing the value function iterations,the convergence of the model-based algorithm is *** equivalence of several types of value iteration algorithms is *** effectiveness of model-free algorithms is demonstrated by a numerical example.
This study introduces the CP-EODE algorithm, a novel hybrid of the Equilibrium Optimizer (EO), and the Differential Evolution (DE) algorithm. It addresses EO’s tendency toward premature convergence by enhancing its e...
详细信息
The importance of Model Predictive control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control ***,the complexity of the greenhouse and its limited prior knowledge...
详细信息
The importance of Model Predictive control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control ***,the complexity of the greenhouse and its limited prior knowledge prevent an exact mathematical description of the *** methods provide a promising solution to this issue through their capacity to identify the system’s comportment using the fit between model output and observed *** this paper,we introduce an application of Constrained Model Predictive control(CMPC)for a greenhouse temperature and relative *** this purpose,two Multi Input Single Output(MISO)systems,using Numerical Subspace State Space System Identification(N4SID)algorithm,are firstly suggested to identify the temperature and the relative humidity comportment to heating and ventilation *** this sense,linear state space models were adopted in order to evaluate the robustness of the control *** the system is identified,the MPC technique is applied for the temperature and the humidity *** results show that the regulation of the temperature and the relative humidity under constraints was guaranteed,both parameters respect the ranges 15℃≤T_(int)≤30℃and 50%≤H_(int)≤70%*** the other hand,the control signals uf and uh applied to the fan and the heater,respect the hard constraints notion,the control signals for the fan and the heater did not exceed 0≤uf≤4.3 Volts and 0≤uh≤5 Volts,respectively,which proves the effectiveness of the MPC and the tracking ***,we show that with the proposed technique,using a new optimization toolbox,the computational complexity has been significantly *** greenhouse in question is devoted to Schefflera Arboricola cultivation.
3D pose transfer over unorganized point clouds is a challenging generation task,which transfers a source’s pose to a target shape and keeps the target’s *** deep models have learned deformations and used the target...
详细信息
3D pose transfer over unorganized point clouds is a challenging generation task,which transfers a source’s pose to a target shape and keeps the target’s *** deep models have learned deformations and used the target’s identity as a style to modulate the combined features of two shapes or the aligned vertices of the source ***,all operations in these models are point-wise and independent and ignore the geometric information on the surface and structure of the input *** disadvantage severely limits the generation and generalization *** this study,we propose a geometry-aware method based on a novel transformer autoencoder to solve this *** efficient self-attention mechanism,that is,cross-covariance attention,was utilized across our framework to perceive the correlations between points at different ***,the transformer encoder extracts the target shape’s local geometry details for identity attributes and the source shape’s global geometry structure for pose *** transformer decoder efficiently learns deformations and recovers identity properties by fusing and decoding the extracted features in a geometry attentional manner,which does not require corresponding information or modulation *** experiments demonstrated that the geometry-aware method achieved state-of-the-art performance in a 3D pose transfer *** implementation code and data are available at https://***/SEULSH/Geometry-Aware-3D-Pose-Transfer-Using-Transfor mer-Autoencoder.
This paper highlights the relationship between the notions of meaning and respectively the semantic notion of qualia as they appear in cybersemiotic models of information transmission. The research work proposes a new...
详细信息
The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered *** authors adopt a direct approach,i.e.,without identifying the unknown parameters and functions within the syst...
详细信息
The paper considers the adaptive regulation for the Hammerstein and Wiener systems with event-triggered *** authors adopt a direct approach,i.e.,without identifying the unknown parameters and functions within the systems,adaptive regulators are directly designed based on the event-triggered observations on the regulation *** adaptive regulators belong to the stochastic approximation algorithms and under moderate assumptions,the authors prove that the adaptive regulators are optimal for both the Hammerstein and Wiener systems in the sense that the squared regulation errors are asymptotically *** authors also testify the theoretical results through simulation studies.
暂无评论