This paper concerns the risk-aware control of stochastic systems with temporal logic specifications dynamically assigned during runtime. Conventional risk-aware control typically assumes that all specifications are pr...
详细信息
This paper concerns the risk-aware control of stochastic systems with temporal logic specifications dynamically assigned during runtime. Conventional risk-aware control typically assumes that all specifications are predefined and remain unchanged during runtime. In this paper, we propose a novel, provably correct model predictive control scheme for linear systems with additive unbounded stochastic disturbances that dynamically evaluates the feasibility of runtime signal temporal logic specifications and automatically reschedules the control inputs accordingly. The control method guarantees the probabilistic satisfaction of newly accepted specifications without sacrificing the satisfaction of the previously accepted ones. The proposed control method is validated by a robotic motion planning case study.
Identification in interconnected systems requires the handling of phenomena that go beyond the classical open-loop and closed-loop type of identification problems. Over the last decade a comprehensive theory has been ...
详细信息
Identification in interconnected systems requires the handling of phenomena that go beyond the classical open-loop and closed-loop type of identification problems. Over the last decade a comprehensive theory has been developed for addressing identification problems in linear dynamic networks, formulated in a module framework, where the network structure is characterized by a directed graph in which nodes are signals and links are transfer functions. The resulting methods and approaches have been collected in a MATLAB App and Toolbox, supported by an attractive graphical user interface that provides an interactive workflow for manipulating the structural properties of dynamic networks, applying basic network operations like immersion and module invariance testing, and for investigating network/module generic identifiability and selecting appropriate predictor model inputs and outputs. The workflow supports the allocation of external excitation signals (actuation) and measured node signals (sensing) so as to achieve generic identifiability and provide consistent estimation of target modules. The Toolbox includes algorithms for actual network simulation and identification.
We study the problem of policy estimation for the Linear Quadratic Regulator (LQR) in discrete-time linear timeinvariant uncertain dynamical systems. We propose a Moreau Envelope-based surrogate LQR cost, built from a...
详细信息
The integration of information communication technology with the power grid exposes it to cyber threats. The network state estimation process provides stability to the smart grid. The communication network plays a maj...
详细信息
Demand-side flexibility from renewable energy community members increases the benefits of local production and exchanges. To effectively harness this flexibility, end-users must be rewarded for their efforts regarding...
详细信息
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...
详细信息
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://***/yahuiliu99/PointC onT.
Software is a crucial component in the communication systems,and its security is of paramount ***,it is susceptible to different types of attacks due to potential ***,significant time and effort is required to fix suc...
详细信息
Software is a crucial component in the communication systems,and its security is of paramount ***,it is susceptible to different types of attacks due to potential ***,significant time and effort is required to fix such *** propose an automated program repair method based on controlled text generation ***,we utilize a fine-tuned language model for patch generation and introduce a discriminator to evaluate the generation process,selecting results that contribute most to vulnerability ***,we perform static syntax analysis to expedite the patch verification *** effectiveness of the proposed approach is validated using QuixBugs and Defects4J datasets,demonstrating significant improvements in generating correct patches compared to other existing methods.
This paper focuses on the optimal output synchronization control problem of heterogeneous multiagent systems(HMASs) subject to nonidentical communication delays by a reinforcement learning *** with existing studies as...
详细信息
This paper focuses on the optimal output synchronization control problem of heterogeneous multiagent systems(HMASs) subject to nonidentical communication delays by a reinforcement learning *** with existing studies assuming that the precise model of the leader is globally or distributively accessible to all or some of the followers, the leader's precise dynamical model is entirely inaccessible to all the followers in this paper. A data-based learning algorithm is first proposed to reconstruct the leader's unknown system matrix online. A distributed predictor subject to communication delays is further devised to estimate the leader's state, where interaction delays are allowed to be nonidentical. Then, a learning-based local controller, together with a discounted performance function, is projected to reach the optimal output synchronization. Bellman equations and game algebraic Riccati equations are constructed to learn the optimal solution by developing a model-based reinforcement learning(RL) algorithm online without solving regulator equations, which is followed by a model-free off-policy RL algorithm to relax the requirement of all agents' dynamics faced by the model-based RL algorithm. The optimal tracking control of HMASs subject to unknown leader dynamics and communication delays is shown to be solvable under the proposed RL algorithms. Finally, the effectiveness of theoretical analysis is verified by numerical simulations.
Increasing the operational efficiency of agricultural machines is essential by the use of artificial intelligence (AI)-based navigation, planning, and control algorithms to handle the increasing demand for food produc...
Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we impro...
详细信息
暂无评论