In network slicing, the network operator needs to satisfy the service level agreements of multiple slices at the same time and on the same physical infrastructure. To do so with reduced provisioned resources, the oper...
详细信息
An urgent task at this moment is the use of blockchain technology to ensure the security of medical decision support systems (MDSS). Our research is devoted to development of blockchain-based MDSS (regarding possibili...
详细信息
Industrial Internet of Things(IIoT)is a pervasive network of interlinked smart devices that provide a variety of intelligent computing services in industrial *** IIoT nodes operate confidential data(such as medical,tr...
详细信息
Industrial Internet of Things(IIoT)is a pervasive network of interlinked smart devices that provide a variety of intelligent computing services in industrial *** IIoT nodes operate confidential data(such as medical,transportation,military,etc.)which are reachable targets for hostile intruders due to their openness and varied *** Detection systems(IDS)based on Machine Learning(ML)and Deep Learning(DL)techniques have got significant ***,existing ML and DL-based IDS still face a number of obstacles that must be *** instance,the existing DL approaches necessitate a substantial quantity of data for effective performance,which is not feasible to run on low-power and low-memory *** and fewer data potentially lead to low performance on existing *** paper proposes a self-attention convolutional neural network(SACNN)architecture for the detection of malicious activity in IIoT networks and an appropriate feature extraction method to extract the most significant *** proposed architecture has a self-attention layer to calculate the input attention and convolutional neural network(CNN)layers to process the assigned attention features for *** performance evaluation of the proposed SACNN architecture has been done with the Edge-IIoTset and X-IIoTID *** datasets encompassed the behaviours of contemporary IIoT communication protocols,the operations of state-of-the-art devices,various attack types,and diverse attack scenarios.
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the...
详细信息
The survival rate of lung cancer relies significantly on how far the disease has spread when it is detected, how it reacts to the treatment, the patient’s overall health, and other factors. Therefore, the earlier the lung cancer diagnosis, the higher the survival rate. For radiologists, recognizing malignant lung nodules from computed tomography (CT) scans is a challenging and time-consuming process. As a result, computer-aided diagnosis (CAD) systems have been suggested to alleviate these burdens. Deep-learning approaches have demonstrated remarkable results in recent years, surpassing traditional methods in different fields. Researchers are currently experimenting with several deep-learning strategies to increase the effectiveness of CAD systems in lung cancer detection with CT. This work proposes a deep-learning framework for detecting and diagnosing lung cancer. The proposed framework used recent deep-learning techniques in all its layers. The autoencoder technique structure is tuned and used in the preprocessing stage to denoise and reconstruct the medical lung cancer dataset. Besides, it depends on the transfer learning pre-trained models to make multi-classification among different lung cancer cases such as benign, adenocarcinoma, and squamous cell carcinoma. The proposed model provides high performance while recognizing and differentiating between two types of datasets, including biopsy and CT scans. The Cancer Imaging Archive and Kaggle datasets are utilized to train and test the proposed model. The empirical results show that the proposed framework performs well according to various performance metrics. According to accuracy, precision, recall, F1-score, and AUC metrics, it achieves 99.60, 99.61, 99.62, 99.70, and 99.75%, respectively. Also, it depicts 0.0028, 0.0026, and 0.0507 in mean absolute error, mean squared error, and root mean square error metrics. Furthermore, it helps physicians effectively diagnose lung cancer in its early stages and allows spe
—Neural networks (NNs) have been driving machine learning progress in recent years, but their larger models present challenges in resource-limited environments. Weight pruning reduces the computational demand, often ...
详细信息
—Neural networks (NNs) have been driving machine learning progress in recent years, but their larger models present challenges in resource-limited environments. Weight pruning reduces the computational demand, often with performance degradation and long training procedures. This work introduces distilled gradual pruning with pruned fine-tuning (DG2PF), a comprehensive algorithm that iteratively prunes pretrained NNs using knowledge distillation. We employ a magnitude-based unstructured pruning function that selectively removes a specified proportion of unimportant weights from the network. This function also leads to an efficient compression of the model size while minimizing classification accuracy loss. Additionally, we introduce a simulated pruning strategy with the same effects of weight recovery but while maintaining stable convergence. Furthermore, we propose a multistep self-knowledge distillation strategy to effectively transfer the knowledge of the full, unpruned network to the pruned counterpart. We validate the performance of our algorithm through extensive experimentation on diverse benchmark datasets, including CIFAR-10 and ImageNet, as well as a set of model architectures. The results highlight how our algorithm prunes and optimizes pretrained NNs without substantially degrading their classification accuracy while delivering significantly faster and more compact models. Impact Statement—In recent times, NNs have demonstrated remarkable outcomes in various tasks. Some of the most advanced possess billions of trainable parameters, making their training and inference both energy intensive and costly. As a result, the focus on pruning is growing in response to the escalating demand for NNs. However, most current pruning techniques involve training a model from scratch or with a lengthy training process leading to a significant increase in carbon footprint, and some experience a notable drop in performance. In this article, we introduce DG2PF. This unstruct
Cardiovascular diseases are among the vital causes of mortality worldwide which need early detection with the use of auscultation examination. Heart diseases could be diagnosed in a convenient way of heartbeat sound a...
详细信息
Delay-sensitive applications are becoming more and more in demand as a result of the development of information systems and the expansion of communication in cloud computing technologies. Some of these requests will b...
详细信息
The Internet of Things (IoTs) is apace growing, billions of IoT devicesare connected to the Internet which communicate and exchange data among eachother. Applications of IoT can be found in many fields of engineering ...
详细信息
The Internet of Things (IoTs) is apace growing, billions of IoT devicesare connected to the Internet which communicate and exchange data among eachother. Applications of IoT can be found in many fields of engineering and sciencessuch as healthcare, traffic, agriculture, oil and gas industries, and logistics. Inlogistics, the products which are to be transported may be sensitive and perishable, and require controlled environment. Most of the commercially availablelogistic containers are not integrated with IoT devices to provide controlled environment parameters inside the container and to transmit data to a remote *** necessitates the need for designing and fabricating IoT based smart containers. Due to constrained nature of IoT devices, these are prone to different cybersecurity attacks such as Denial of Service (DoS), Man in Middle (MITM) andReplay. Therefore, designing efficient cyber security framework are required forsmart container. The Datagram Transport Layer Security (DTLS) Protocol hasemerged as the de facto standard for securing communication in IoT ***, it is unable to minimize cyber security attacks such as Denial of Serviceand Distributed Denial of Service (DDoS) during the handshake process. Themain contribution of this paper is to design a cyber secure framework by implementing novel hybrid DTLS protocol in smart container which can efficientlyminimize the effects of cyber attacks during handshake process. The performanceof our proposed framework is evaluated in terms of energy efficiency, handshaketime, throughput and packet delivery ratio. Moreover, the proposed framework istested in IoT based smart containers. The proposed framework decreases handshake time more than 9% and saves 11% of energy efficiency for transmissionin compare of the standard DTLS, while increases packet delivery ratio andthroughput by 83% and 87% respectively.
This paper presents a data-driven variable reduction approach to accelerate the computation of large-scale transmission-constrained unit commitment(TCUC).Lagrangian relaxation(LR)and mixed-integer linear programming(M...
详细信息
This paper presents a data-driven variable reduction approach to accelerate the computation of large-scale transmission-constrained unit commitment(TCUC).Lagrangian relaxation(LR)and mixed-integer linear programming(MILP)are popular approaches to solving ***,with many binary unit commitment variables,LR suffers from slow convergence and MILP presents heavy computation *** proposed data-driven variable reduction approach consists of offline and online calculations to accelerate computational performance of the MILP-based large-scale TCUC problems.A database including multiple nodal net load intervals and the corresponding TCUC solutions is first built offline via the data-driven and all-scenario-feasible(ASF)approaches,which is then leveraged to efficiently solve new TCUC instances ***/off statuses of considerable units can be fixed in the online calculation according to the database,which would reduce the computation burden while guaranteeing good solution quality for new TCUC instances.A feasibility proposition is proposed to promptly check the feasibility of the new TCUC instances with fixed binary variables,which can be used to dynamically tune parameters of binary variable fixing strategies and guarantee the existence of feasible UC solutions even when system structure *** tests illustrate the efficiency of the proposed approach.
Federated Learning (FL), an emerging distributed Artificial Intelligence (AI) technique, is susceptible to jamming attacks during the wireless transmission of trained models. In this letter, we introduce a jamming att...
详细信息
暂无评论