作者:
PAIGE, KKCONVERSE, RAUSNLCdr. Kathleen K. Paige
USN:graduated with a BA from the University of New Hampshire in 1970. She received her commission from Officer Candidate School in April 1971 and performed her first tour of duty with VFP-63 NAS Miramar. LCdr. Paige then received her MS from the Naval Post Graduate School in June 1976 and returned to San Diego to serve as Head Support Software Division at the Fleet Combat Direction System Support Activity. In May 1981 she reported to NA VSEA (PMS-408) where she served initially as Chairman of the NAVMAT Software Engineering Environment Working Group. She has been assigned as Deputy AN/UYK-43 Acquisition Manager since October 1981. LCdr. Paige was designated a fully qualified Engineering Duty Officer in December 1983. Robert A. Converse:is presently the Acquisition Manager for the Ada Language System/Navy (ALS/N) for the Naval Sea Systems Command Tactical Embedded Computer Resources Project. As such
he is responsible for the definition and development of the ALS/N to be provided as a Navy standard computer programming system for Navy mission critical applications. Mr. Converse received a Bachelor of Science degree in Physics from Wheaton College Wheaton II. He spent fourteen years with the Naval Underwater Systems Center Newport Rhode Island during which time he designed and developed the Fortran compiler for the Navy Standard AN/UYK-7 computer. Also during that period he received a Master of Science degree in Computer Science from the University of Rhode Island. His thesis for that degree was entitled “Optimization Techniques for the NUSC Fortran Cross-Compiler”. Mr. Converse started his involvement with the Ada program in 1975 with the initial “Strawman” requirements review. Subsequently he was named as the Navy Ada Distinguished Reviewer and was intimately involved in the selection and refinement of the Ada language as it evolved to become ANSI/MIL-STD-1815A.
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of co...
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of computer technology. computers embedded in mission critical Navy systems are integral to our strategic and tactical defense capabilities. Thus, the military power of the U.S. Navy is inextricably tied to the use of programmable digital computers. The computerprogram is the essential element that embodies the system “intelligence”. In addition, it provides the flexibility to respond to changing threats and requirements. However, this very flexibility and capability poses a host of difficulties hindering full realization of the advantages. This paper describes the lessons learned about computerprogram development over the past twenty five years and discusses a software engineering process that addresses these lessons. It then describes how Ada and its related Ada programming Support and Run-Time Environments foster this software engineering process to improve computerprogram productivity and achieve greater system reliability and adaptibility. Finally, the paper discusses how the use of Ada and its environments can enhance the interoperability and transferability of computerprograms among Navy projects and significantly reduce overall life cycle costs for Navy mission critical computerprograms.
This paper presents an integrated approach to computer-Aided Ship Design for U.S. Navy preliminary and contract design. An integrated Hull Design System (HDS), currently under development by the Hull Group of the Nava...
This paper presents an integrated approach to computer-Aided Ship Design for U.S. Navy preliminary and contract design. An integrated Hull Design System (HDS), currently under development by the Hull Group of the Naval Sea systems Command (NAVSEA 32). is the vehicle for the discussion. This paper is directed toward practicing ship design professionals and the managers of the ship design process. Primary emphasis of this paper, and of the development effort currently under way, is on aiding ship design professionals in their work. Focus is on integration and management control of the extremely complex set of processes which make up naval ship design. The terminology of the Ship Designer and Design Manager is used. The reader needs no familiarity with the technologies of computerscience.
作者:
SEJD, JJWATKINSON, KWHILL, WFMr. James J. Sejd received his B.S. degree in Civil Engineering from Case
Western Reserve University and has since undergone considerable graduate study at both The George Washington and American Universities. He served almost four years in the U.S. Navy as a Naval Aviator and enjoys the unique distinction of being qualified in both Heavier- and Lighter-than-Air aircraft. Early in his career he was employed at the Navy's Bureau of Ships in the capacity of a Structural Designer and Structural Research Monitor. In 1966 he joined the Staff of the Center for Naval Analyses where he was involved in the mathematical modeling of ships and aircraft and in economic “trade-off‘ analysis. In 1970. he went to the Naval Ship Engineering Center as an Operations Research Analyst in the Ship Design and Development Division. At the present time he is employed as a Program Manager for the Naval Sea Systems Command Ship Design Research and Development Office. A member of ASNE since 1973 he also is a member of the Association of Scientists and Engineers at NAVSEA the Operations Research Society of America and the Lighter-Than-Air Society. Mr. Kenneth W. Watkinson received both is B.S. and M.S. degrees in Engineering Science from Florida State University in 1970 and 1971 respectively. Since graduation
he has been employed at the Naval Coastal Systems Center (NCSC). Panama City. Fla. where he is primarily involved in the investigation of the stability and control of underwater vehicles. For the past four years he has been the Task Leader and Principal Investigator for the NCSC portion of the Advanced Submarine Control Program involved in developing control design methods and the instrumentation system for the Submarine Control System Test Vehicle. Mr.
William F. Hill is currently the ASCOP Program Manager at Lockheed Missiles & Space Company (LMSC) Inc. where he has the overall responsibility for design and construction of the Control System Test Vehicle (CSTV). He entered the aircraft industry in England as an Apprentice w
As part of the Advanced Submarine Control program (ASCOP), the Naval Sea systems Command has developed an open water Submarine Control System Test Vehicle (CSTV). This vehicle is a 1/12 scale model of an SSN 688 Class...
As part of the Advanced Submarine Control program (ASCOP), the Naval Sea systems Command has developed an open water Submarine Control System Test Vehicle (CSTV). This vehicle is a 1/12 scale model of an SSN 688 Class Submarine, with provisions for easy geometric changes. Such changes include alternate Sail size and location, the addition of parallel middle-bodies, alternative tail sections, and alternative control configurations. A self-contained instrumentation and control system provides the capability for “on-board” recording of all relevant Submarine-state variables, over the entire speed and depth range, to a degree of data accuracy exceeding any known system. With the means thus available to correlate measured vehicle hydrodynamics with selected maneuvers, conditions, and changes in hull geometry and control surface configuration, modern mathematical techniques for improving submarine equations of motion can be employed to permit dramatic design enhancements in both safety and performance. This paper provides the rationale and history of the development of this vehicle, a description of the instrumentation and control package, and a description of the vehicle itself.
Dynamic Simulation is defined as the hardware and software required to present to the student operator visual and audible cues and responses that are the same as those encountered when operating the Control Consoles a...
作者:
PLATO, ARTIS I.GAMBREL, WILLIAM DAVIDArtis I. Plato:is Head of the Design Work Study/ Shipboard Manning/Human Factors Engineering Section
Systems Engineering and Analysis Branch Naval Ship Engineering Center (NAVSEC). He graduated from the City College of New York in 1956 receiving his Bachelor of Mechanical Engineering degree. Following this he started work at the New York Naval Shipyard in the Internal Combustion Engine and Cargo Elevator Section. During 1957 and 1958 he was called up for active duty with the U.S. Army Corps of Engineers and served in Europe with a Construction Engineer Battalion. After release from active duty he returned to the shipyard where he remained until 1961 when he transferred to the Naval Supply Research and Development Facility Bayonne New Jersey. Initially he was in charge of an Engineering Support Test Group and the drafting services for the whole Facility. Later he became a Project Engineer in the Food Services Facilities Branch with duties that included planning and designing new afloat and ashore messing facilities for the Navy. In 1966 he transferred to NAVSEC as a Project Engineer in the Design Work Study Section and in this capacity worked on selected projects and manning problems for new construction and also developed a computer program (Manpower Determination Model) that makes accurate crew predictions for feasibility studies. In 1969 he became Head of the Section. He has been active in the U.S. Army Reserve since his release from active duty and his duties have included command of an Engineer Company various Staff positions and his present assignment as Operations Officer for a Civil Affairs Group. He has completed the U. S. A rmy Corps of Engineers Career Course and the Civil Affairs Career Course and is presently enrolled in the U.S. Army Command and General Staff College non-resident course. Additionally he completed graduate studies at American University Washington D.C in 1972 receiving his MSTM degree in Technology of Management and is a member of ASE ASME CAA U. S. Naval Instit
The purpose of this paper is to discuss a system analysis technique called “Design Work Study”, that is used by the U.S. Navy for the development of improved ship control systems. The Design Work Study approach is o...
暂无评论