Vector optimization model has found many important applications in decision making problems such as those in economics theory, management science, and engineering design (since the introduction of the Pareto optimal s...
详细信息
ISBN:
(数字)9783540284451
ISBN:
(纸本)9783540212898
Vector optimization model has found many important applications in decision making problems such as those in economics theory, management science, and engineering design (since the introduction of the Pareto optimal solu tion in 1896). Typical examples of vector optimization model include maxi mization/minimization of the objective pairs (time, cost), (benefit, cost), and (mean, variance) etc. Many practical equilibrium problems can be formulated as variational in equality problems, rather than optimization problems, unless further assump tions are imposed. The vector variational inequality was introduced by Gi- nessi (1980). Extensive research on its relations with vector optimization, the existence of a solution and duality theory has been pursued. The fundamental idea of the Ekeland's variational principle is to assign an optimization problem a slightly perturbed one having a unique solution which is at the same time an approximate solution of the original problem. This principle has been an important tool for nonlinear analysis and optimization theory. Along with the development of vector optimization and set-valued optimization, the vector variational principle introduced by Nemeth (1980) has been an interesting topic in the last decade. Fan Ky's minimax theorems and minimax inequalities for real-valued func tions have played a key role in optimization theory, game theory and math ematical economics. An extension was proposed to vector payoffs was intro duced by Blackwell (1955).
Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as...
详细信息
ISBN:
(数字)9783642018053
ISBN:
(纸本)9783642018046
Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototypes, or Hebbian learning, with a large variety of di?erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro?les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci?cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory.
This book tackles the problem of overshoot and undershoot in blood glucose levels caused by delay in the effects of carbohydrate consumption and insulin administration. The ideas presented here will be very important ...
详细信息
ISBN:
(数字)9783319259130
ISBN:
(纸本)9783319259116;9783319372983
This book tackles the problem of overshoot and undershoot in blood glucose levels caused by delay in the effects of carbohydrate consumption and insulin administration. The ideas presented here will be very important in maintaining the welfare of insulin-dependent diabetics and avoiding the damaging effects of unpredicted swings in blood glucose – accurate prediction enables the implementation of counter-measures. The glucose prediction algorithms described are also a key and critical ingredient of automated insulin delivery systems, the so-called “artificial pancreas”.;The authors address the topic of blood-glucose prediction from medical, scientific and technological points of view. Simulation studies are utilized for complementary analysis but the primary focus of this book is on real applications, using clinical data from diabetic subjects.;The text details the current state of the art by surveying prediction algorithms, and then moves beyond it with the most recent advancesin data-based modeling of glucose metabolism. The topic of performance evaluation is discussed and the relationship of clinical and technological needs and goals examined with regard to their implications for medical devices employing prediction algorithms. Practical and theoretical questions associated with such devices and their solutions are highlighted.;This book shows researchers interested in biomedical device technology and control researchers working with predictive algorithms how incorporation of predictive algorithms into the next generation of portable glucose measurement can make treatment of diabetes safer and more efficient.
This book consitutes the refereed joint proceedings of the First European Workshop on Evolutionary Computation in Image Analysis and Signal Processing, EvoIASP '99 and of the First European Workshop on Evolutionar...
详细信息
ISBN:
(数字)9783540489177
ISBN:
(纸本)9783540658375
This book consitutes the refereed joint proceedings of the First European Workshop on Evolutionary Computation in Image Analysis and Signal Processing, EvoIASP '99 and of the First European Workshop on Evolutionary Telecommunications, EuroEcTel '99, held in Göteborg, Sweden in May 1999. The 18 revised full papers presented were carefully reviewed and selected for inclusion in the volume. The book presents state-of-the-art research results applying techniques from evolutionary computing in the specific application areas.
Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computerscience, and applied math ematics. Combinatorial optimization problems arise in various...
详细信息
ISBN:
(数字)9781475730234
ISBN:
(纸本)9780792359241;9781441948137
Combinatorial (or discrete) optimization is one of the most active fields in the interface of operations research, computerscience, and applied math ematics. Combinatorial optimization problems arise in various applications, including communications network design, VLSI design, machine vision, air line crew scheduling, corporate planning, computer-aided design and man ufacturing, database query design, cellular telephone frequency assignment, constraint directed reasoning, and computational biology. Furthermore, combinatorial optimization problems occur in many diverse areas such as linear and integer programming, graph theory, artificial intelligence, and number theory. All these problems, when formulated mathematically as the minimization or maximization of a certain function defined on some domain, have a commonality of discreteness. Historically, combinatorial optimization starts with linear programming. Linear programming has an entire range of important applications including production planning and distribution, personnel assignment, finance, alloca tion of economic resources, circuit simulation, and control systems. Leonid Kantorovich and Tjalling Koopmans received the Nobel Prize (1975) for their work on the optimal allocation of resources. Two important discover ies, the ellipsoid method (1979) and interior point approaches (1984) both provide polynomial time algorithms for linear programming. These algo rithms have had a profound effect in combinatorial optimization. Many polynomial-time solvable combinatorial optimization problems are special cases of linear programming (e.g. matching and maximum flow). In addi tion, linear programming relaxations are often the basis for many approxi mation algorithms for solving NP-hard problems (e.g. dualheuristics).
暂无评论