We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel’dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gra...
详细信息
We present cosmological constraints from the abundance of galaxy clusters selected via the thermal Sunyaev-Zel’dovich (SZ) effect in South Pole Telescope (SPT) data with a simultaneous mass calibration using weak gravitational lensing data from the Dark Energy Survey (DES) and the Hubble Space Telescope (HST). The cluster sample is constructed from the combined SPT-SZ, SPTpol ECS, and SPTpol 500d surveys, and comprises 1,005 confirmed clusters in the redshift range 0.25–1.78 over a total sky area of 5200 deg2. We use DES Year 3 weak-lensing data for 688 clusters with redshifts z<0.95 and HST weak-lensing data for 39 clusters with 0.6
Most companies’ new business practices are based on customer data. These practices have raised privacy concerns because of the associated risks. Privacy laws require companies to gain customer consent before using th...
详细信息
KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located in Kamioka, Gifu prefecture, Japan. In this article, we describe the KAGRA data management system, i.e...
KAGRA is a newly built gravitational wave observatory, a laser interferometer with a 3 km arm length, located in Kamioka, Gifu prefecture, Japan. In this article, we describe the KAGRA data management system, i.e., recording of data, transfer from the KAGRA experiment site to computing resources, as well as data distribution to tier sites, including international sites in Taiwan and Korea. The amount of KAGRA data exceeded 1.0 PiB and increased by about 1.5 TB per day during operation in 2020. Our system has succeeded in data management, and has achieved performance that can withstand observations after 2023, that is, a transfer rate of 20 MB s-1or more and file storage of sufficient capacity for petabyte class. We also discuss the sharing of data between the global gravitational-wave detector network with other experiments, namely LIGO and Virgo. The latency, which consists of calculation of calibrated strain data and transfer time within the global network, is very important from the view of multi-messenger astronomy using gravitational waves. Real-time calbrated data delivered from the KAGRA detector site and other detectors to our computing system arrive with about 4–15 seconds of latency. These latencies are sufficiently short compared to the time taken for gravitational wave event search computations. We also established a high-latency exchange of offline calibrated data that was aggregated with a better accuracy compared with real-time data.
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalo...
详细信息
We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star–black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc−3 yr−1 and the neutron star–black hole merger rate to be between 7.8 and 140 Gpc−3 yr−1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc−3 yr−1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)κ with κ=2.9−1.8+1.7 for z≲1. Using both binary neutron star and neutron star–black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2−0.2+0.1 to 2.0−0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3−0.5+0.3 and 27.9−1.8+1.9M⊙. While we continue to find that the mass distribution of a binary’s more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned wi
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic a...
详细信息
The article takes a look at an algorithm of decision making in educational management data system based on the Analytic Hierarchy Process. This technique allows to choose the best of the proposed alternatives, the cha...
详细信息
The article takes a look at an algorithm of decision making in educational management data system based on the Analytic Hierarchy Process. This technique allows to choose the best of the proposed alternatives, the characteristics of which are vectors with heterogeneous individual components including those that are not clearly defined. The architecture of a decision-making support system that implements the proposed algorithm is suggested.
The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate...
详细信息
The third Gravitational-Wave Transient Catalog (GWTC-3) describes signals detected with Advanced LIGO and Advanced Virgo up to the end of their third observing run. Updating the previous GWTC-2.1, we present candidate gravitational waves from compact binary coalescences during the second half of the third observing run (O3b) between 1 November 2019, 15∶00 Coordinated Universal Time (UTC) and 27 March 2020, 17∶00 UTC. There are 35 compact binary coalescence candidates identified by at least one of our search algorithms with a probability of astrophysical origin pastro>0.5. Of these, 18 were previously reported as low-latency public alerts, and 17 are reported here for the first time. Based upon estimates for the component masses, our O3b candidates with pastro>0.5 are consistent with gravitational-wave signals from binary black holes or neutron-star–black-hole binaries, and we identify none from binary neutron stars. However, from the gravitational-wave data alone, we are not able to measure matter effects that distinguish whether the binary components are neutron stars or black holes. The range of inferred component masses is similar to that found with previous catalogs, but the O3b candidates include the first confident observations of neutron-star–black-hole binaries. Including the 35 candidates from O3b in addition to those from GWTC-2.1, GWTC-3 contains 90 candidates found by our analysis with pastro>0.5 across the first three observing runs. These observations of compact binary coalescences present an unprecedented view of the properties of black holes and neutron stars.
Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tre...
Unraveling the mechanisms underlying the maintenance of species diversity is a central pursuit in ecology. It has been hypothesized that ectomycorrhizal (EcM) in contrast to arbuscular mycorrhizal fungi can reduce tree species diversity in local communities, which remains to be tested at the global scale. To address this gap, we analyzed global forest inventory data and revealed that the relationship between tree species richness and EcM tree proportion varied along environmental gradients. Specifically, the relationship is more negative at low latitudes and in moist conditions but is unimodal at high latitudes and in arid conditions. The negative association of EcM tree proportion on species diversity at low latitudes and in humid conditions is likely due to more negative plant-soil microbial interactions in these regions. These findings extend our knowledge on the mechanisms shaping global patterns in plant species diversity from a belowground view.
In recent years, human identification based on face recognition has attracted the attention of the scientific community and the general public due to its wide range of applications. A face recognition system involves ...
详细信息
ISBN:
(纸本)9781479919611
In recent years, human identification based on face recognition has attracted the attention of the scientific community and the general public due to its wide range of applications. A face recognition system involves three important phases: face detection, feature extraction and classification (identification and/or verification). The robustness of face recognition could be improved by treating the variations in these stages. One of the main issues in design of face recognition system is how to extract discriminative facial features. A precise extraction of a representative feature set will improve the performance of a face recognition system. Various techniques have been used to represent images efficiently, of which the most well-known and widely applied are Wavelet, Contourlet, Shearlet and Curvelet Transform. Their ability to capture localized time-frequency information of image motivates their use for feature extraction. In this paper, we conduct a systematic empirical study on these transforms as feature extractors from face images. To further reduce the feature dimensionality, we adopt Principal Component Analysis and Linear Discriminant Analysis to select the most discriminative feature sets. The performance levels delivered by each transform are contrasted in terms of the accuracy measure computed over the outputs generated by the Support Vector Machine classifier (SVM). Experimental results conducted on a publicly available database are reported whereby we observe that the Curvelet Transform followed by the Wavelet Transform significantly outperform the others according to accuracy measure calculated over the SVM classifier.
暂无评论