We propose a systematic method for learning stable and physically interpretable dynamical models using sampled trajectory data from physical processes based on a generalized Onsager principle. The learned dynamics are...
详细信息
In this study, the inner position loop addition for plastic deformation control of the error robustness of the model and actual parameters is proposed. The inner position loop is a type of position feedback control ba...
详细信息
ISBN:
(数字)9781728167947
ISBN:
(纸本)9781728167954
In this study, the inner position loop addition for plastic deformation control of the error robustness of the model and actual parameters is proposed. The inner position loop is a type of position feedback control based on the estimation of model parameters and dynamics of robots. This position control system with proportional and derivative gains modifies the trajectory of the end effector close to the desired trajectory. The robustness of the proposed control scheme is evaluated by comparing it with plastic deformation control without an inner position loop in both simulation and actual environments. Finally, the stable reaction with the proposed control is demonstrated for the case where a human pushes the robot finger.
Analysis of an individual’s immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends ...
详细信息
作者:
Dutt, NikilRegazzoni, Carlo S.Rinner, BernhardYao, XinNikil Dutt (Fellow
IEEE) received the Ph.D. degree from the University of Illinois at Urbana–Champaign Champaign IL USA in 1989.""He is currently a Distinguished Professor of computer science (CS) cognitive sciences and electrical engineering and computer sciences (EECS) with the University of California at Irvine Irvine CA USA. He is a coauthor of seven books. His research interests include embedded systems electronic design automation (EDA) computer architecture distributed systems healthcare Internet of Things (IoT) and brain-inspired architectures and computing.""Dr. Dutt is a Fellow of ACM. He was a recipient of the IFIP Silver Core Award. He has received numerous best paper awards. He serves as the Steering Committee Chair of the IEEE/ACM Embedded Systems Week (ESWEEK). He is also on the steering organizing and program committees of several premier EDA and embedded system design conferences and workshops. He has served on the Editorial Boards for the IEEE Transactions on Very Large Scale Integration (VLSI) Systems and the ACM Transactions on Embedded Computing Systems and also previously served as the Editor-in-Chief (EiC) for the ACM Transactions on Design Automation of Electronic Systems. He served on the Advisory Boards of the IEEE Embedded Systems Letters the ACM Special Interest Group on Embedded Systems the ACM Special Interest Group on Design Automationt and the ACM Transactions on Embedded Computing Systems. Carlo S. Regazzoni (Senior Member
IEEE) received the M.S. and Ph.D. degrees in electronic and telecommunications engineering from the University of Genoa Genoa Italy in 1987 and 1992 respectively.""He is currently a Full Professor of cognitive telecommunications systems with the Department of Electrical Electronics and Telecommunication Engineering and Naval Architecture (DITEN) University of Genoa and a Co-Ordinator of the Joint Doctorate on Interactive and Cognitive Environments (JDICE) international Ph.D. course started initially as EU Erasmus Mundus Project and
Autonomous systems are able to make decisions and potentially take actions without direct human intervention, which requires some knowledge about the system and its environment as well as goal-oriented reasoning. In c...
详细信息
Autonomous systems are able to make decisions and potentially take actions without direct human intervention, which requires some knowledge about the system and its environment as well as goal-oriented reasoning. In computer systems, one can derive such behavior from the concept of a rational agent with autonomy (“control over its own actions”), reactivity (“react to events from the environment”), proactivity (“act on its own initiative”), and sociality (“interact with other agents”) as fundamental properties \n[1]\n. Autonomous systems will undoubtedly pervade into our everyday lives, and we will find them in a variety of domains and applications including robotics, transportation, health care, communications, and entertainment to name a few. \nThe articles in this month’s special issue cover concepts and fundamentals, architectures and techniques, and applications and case studies in the exciting area of self-awareness in autonomous systems.
The use of computer-aided diagnosis in the reliable and fast detection of corona virus disease (COVID-19) has become a necessity to prevent the spread of the virus during the pandemic to ease the burden on the medical...
详细信息
In this paper strategies to control the speed of a generic DC motor system are discussed. They range from the conventional, like PID and state-feedback, to reference model adaptive algorithms such as MRAC, VS-MRAC and...
详细信息
Background: Early warning signs monitoring by service users with schizophrenia has shown promise in preventing relapse but the quality of evidence is low. We aimed to establish the feasibility of undertaking a definit...
Background: Early warning signs monitoring by service users with schizophrenia has shown promise in preventing relapse but the quality of evidence is low. We aimed to establish the feasibility of undertaking a definitive randomised controlled trial to determine the effectiveness of a blended digital intervention for relapse prevention in schizophrenia. Methods: This multicentre, feasibility, cluster randomised controlled trial aimed to compare Early signs Monitoring to Prevent relapse in psychosis and prOmote Well-being, Engagement, and Recovery (EMPOWER) with treatment as usual in community mental health services (CMHS) in Glasgow and Melbourne. CMHS were the unit of randomisation, selected on the basis of those that probably had five or more care coordinators willing to participate. Participants were eligible if they were older than 16 years, had a schizophrenia or related diagnosis confirmed via case records, were able to provide informed consent, had contact with CMHS, and had had a relapse within the previous 2 years. Participants were randomised within stratified clusters to EMPOWER or to continue their usual approach to care. EMPOWER blended a smartphone for active monitoring of early warning signs with peer support to promote self-management and clinical triage to promote access to relapse prevention. Main outcomes were feasibility, acceptability, usability, and safety, which was assessed through face-to-face interviews. App usage was assessed via the smartphone and self-report. Primary end point was 12 months. Participants, research assistants and other team members involved in delivering the intervention were not masked to treatment conditions. Assessment of relapse was done by an independent adjudication panel masked to randomisation group. The study is registered at ISRCTN (99559262). Findings: We identified and randomised eight CMHS (six in Glasgow and two in Melbourne) comprising 47 care coordinators. We recruited 86 service users between Jan 19 and Au
The following work presents a new approach to automatic selection of Tikhonov's regularization parameter, responsible for controlling the weight value of an ELM neural network. A strategy based on measurements obt...
详细信息
The following work presents a new approach to automatic selection of Tikhonov's regularization parameter, responsible for controlling the weight value of an ELM neural network. A strategy based on measurements obtained from data projection (Fisher-Score) is introduced. Seven datasets are tested and results are compared to those obtained when the regularization parameter is selected through cross-validation. The strategy shows satisfactory classification performance (in terms of p-value), while presenting significant training time reduction.
Diffusion-weighted MRI (DWI) is essential for stroke diagnosis, treatment decisions, and prognosis. However, image and disease variability hinder the development of generalizable AI algorithms with clinical value. We ...
详细信息
Diffusion-weighted MRI (DWI) is essential for stroke diagnosis, treatment decisions, and prognosis. However, image and disease variability hinder the development of generalizable AI algorithms with clinical value. We address this gap by presenting a novel ensemble algorithm derived from the 2022 Ischemic Stroke Lesion Segmentation (ISLES) challenge. ISLES’22 provided 400 patient scans with ischemic stroke from various medical centers, facilitating the development of a wide range of cutting-edge segmentation algorithms by the research community. By assessing them against a hidden test set, we identified strengths, weaknesses, and potential biases. Through collaboration with leading teams, we combined top-performing algorithms into an ensemble model that overcomes the limitations of individual solutions. Our ensemble model combines the individual algorithms’ strengths and achieved superior ischemic lesion detection and segmentation accuracy (median Dice score: 0.82, median lesion-wise F1 score: 0.86) on our internal test set compared to individual algorithms. This accuracy generalized well across diverse image and disease variables. Furthermore, the model excelled in extracting clinical biomarkers like lesion types and affected vascular territories. Notably, in a Turing-like test, neuroradiologists consistently preferred the algorithm’s segmentations over manual expert efforts, highlighting increased comprehensiveness and precision. Validation using a real-world external dataset (N=1686) confirmed the model’s generalizability (median Dice score: 0.82, median lesion-wise F1 score: 0.86). The algorithm’s outputs also demonstrated strong correlations with clinical scores (admission NIHSS and 90-day mRS) on par with or exceeding expert-derived results, underlining its clinical relevance. This study offers two key findings. First, we present an ensemble algorithm that detects and segments ischemic stroke lesions on DWI across diverse scenarios on par with expert (neuro)rad
暂无评论