咨询与建议

限定检索结果

文献类型

  • 3,329 篇 会议
  • 2,075 篇 期刊文献
  • 19 册 图书

馆藏范围

  • 5,423 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,354 篇 工学
    • 1,497 篇 计算机科学与技术...
    • 1,411 篇 软件工程
    • 1,346 篇 控制科学与工程
    • 706 篇 机械工程
    • 479 篇 电气工程
    • 368 篇 信息与通信工程
    • 289 篇 仪器科学与技术
    • 277 篇 电子科学与技术(可...
    • 243 篇 交通运输工程
    • 242 篇 生物工程
    • 161 篇 光学工程
    • 159 篇 动力工程及工程热...
    • 157 篇 生物医学工程(可授...
    • 138 篇 化学工程与技术
    • 116 篇 土木工程
    • 106 篇 航空宇航科学与技...
    • 98 篇 力学(可授工学、理...
    • 92 篇 安全科学与工程
    • 91 篇 建筑学
  • 1,736 篇 理学
    • 965 篇 数学
    • 563 篇 系统科学
    • 327 篇 物理学
    • 282 篇 统计学(可授理学、...
    • 262 篇 生物学
    • 123 篇 化学
  • 748 篇 管理学
    • 617 篇 管理科学与工程(可...
    • 162 篇 工商管理
    • 154 篇 图书情报与档案管...
  • 149 篇 医学
    • 122 篇 临床医学
    • 89 篇 基础医学(可授医学...
  • 97 篇 法学
  • 69 篇 经济学
  • 49 篇 农学
  • 29 篇 军事学
  • 24 篇 教育学
  • 19 篇 艺术学
  • 10 篇 文学

主题

  • 150 篇 control systems
  • 123 篇 feature extracti...
  • 119 篇 automation
  • 113 篇 neural networks
  • 103 篇 robustness
  • 99 篇 training
  • 96 篇 computational mo...
  • 86 篇 reinforcement le...
  • 84 篇 robust control
  • 82 篇 mathematical mod...
  • 80 篇 optimization
  • 76 篇 vehicles
  • 74 篇 uncertainty
  • 71 篇 laboratories
  • 69 篇 nonlinear system...
  • 66 篇 trajectory
  • 62 篇 fault detection
  • 60 篇 deep learning
  • 60 篇 robots
  • 58 篇 accuracy

机构

  • 513 篇 state key labora...
  • 257 篇 university of ch...
  • 231 篇 the state key la...
  • 213 篇 school of artifi...
  • 194 篇 key laboratory o...
  • 183 篇 institutes for r...
  • 179 篇 school of automa...
  • 142 篇 hubei key labora...
  • 142 篇 shenyang institu...
  • 118 篇 state key labora...
  • 105 篇 school of automa...
  • 97 篇 the state key la...
  • 88 篇 state key labora...
  • 80 篇 ieee
  • 72 篇 qingdao academy ...
  • 71 篇 key laboratory o...
  • 65 篇 state key labora...
  • 64 篇 school of automa...
  • 62 篇 school of automa...
  • 62 篇 engineering rese...

作者

  • 159 篇 fei-yue wang
  • 91 篇 wang fei-yue
  • 58 篇 gang xiong
  • 53 篇 péter gáspár
  • 48 篇 xiong gang
  • 48 篇 j. bokor
  • 46 篇 derong liu
  • 45 篇 yisheng lv
  • 44 篇 jie chen
  • 44 篇 yuanqing xia
  • 42 篇 tan min
  • 42 篇 dongbin zhao
  • 41 篇 fenghua zhu
  • 39 篇 balázs németh
  • 39 篇 tóth roland
  • 37 篇 johansson karl h...
  • 37 篇 gáspár péter
  • 36 篇 chen jie
  • 35 篇 min wu
  • 35 篇 liu derong

语言

  • 5,140 篇 英文
  • 184 篇 其他
  • 97 篇 中文
  • 4 篇 俄文
  • 1 篇 法文
检索条件"机构=Systems and Control Laboratory Computer and Automation Institute"
5423 条 记 录,以下是461-470 订阅
排序:
State Derivative Normalization for Continuous-Time Deep Neural Networks
收藏 引用
IFAC-PapersOnLine 2024年 第15期58卷 253-258页
作者: Jonas Weigand Gerben I. Beintema Jonas Ulmen Daniel Görges Roland Tóth Maarten Schoukens Martin Ruskowski Chair of Machine Tools and Control Systems RPTU Kaiserslautern and the German Research Center for Artificial Intelligence Kaiserslautern Germany Control Systems (CS) Group at the Department of Electrical Engineering Eindhoven University of Technology Netherlands. R. Tóth is also affiliated to the Systems and Control Laboratory at the Institute for Computer Science and Control Budapest Hungary Institute for Electromobility RPTU Kaiserslautern Germany
The importance of proper data normalization for deep neural networks is well known. However, in continuous-time state-space model estimation, it has been observed that improper normalization of either the hidden state... 详细信息
来源: 评论
Partially Occluded Face Expression Recognition with CBAM-Based Residual Network for Teaching Scene
Partially Occluded Face Expression Recognition with CBAM-Bas...
收藏 引用
2023 China automation Congress, CAC 2023
作者: Bai, Yanxing Chen, Luefeng Li, Min Wu, Min Pedrycz, Witold Hirota, Kaoru School of Automation China University of Geosciences Wuhan430074 China School of Automation Ministry of Education China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Wuhan430074 China University of Alberta Department of Electrical and Computer Engineering EdmontonABT6G 2R3 Canada Systems Research Institute Polish Academy of Sciences Warsaw00-901 Poland Istinye University Department of Computer Engineering Sariyer Istanbul34396 Turkey Tokyo Institute of Technology Yokohama226-8502 Japan
In this paper, a deep residual network based on convolutional block attention module (CBAM) is proposed, which is utilized for feature extraction of partially occluded face expression data. The proposed method overcom... 详细信息
来源: 评论
OPTIMAL DESIGN OF THERMAL MANAGEMENT SYSTEM FOR AIRBORNE DIRECTED ENERGY WEAPONS
OPTIMAL DESIGN OF THERMAL MANAGEMENT SYSTEM FOR AIRBORNE DIR...
收藏 引用
2024 CSAA/IET International Conference on Aircraft Utility systems, AUS 2024
作者: Liu, Yide Li, Yang Cheng, Chaoqian Zhao, Longfei School of Automation Science and Electrical Engineering Beihang University Beijing100191 China Ningbo Institute of Technology Beihang University Ningbo315800 China National Key Laboratory of Aircraft Integrated Flight Control Beijing100191 China Key Laboratory of Advanced Aircraft Utility Systems Beihang University Ministry of Industry and Information Technology China Tianmushan Laboratory Hangzhou311115 China
Next-generation aircraft will carry directed energy weapons to ensure air superiority and significantly enhance both defensive and offensive capabilities. However, these weapons face severe thermal management challeng... 详细信息
来源: 评论
Skeleton-Based Multi-Stream Adaptive Graph Convolutional Network for Indoor Scene Action Recognition
Skeleton-Based Multi-Stream Adaptive Graph Convolutional Net...
收藏 引用
2023 China automation Congress, CAC 2023
作者: Li, Jiazhuo Chen, Luefeng Li, Min Wu, Min Pedrycz, Witold Hirota, Kaoru The School of Automation The Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems The Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of Education China University of Geosciences Wuhan430074 China The Department of Electrical and Computer Engineering University of Alberta EdmontonABT6G 2R3 Canada The Systems Research Institute Polish Academy of Sciences Warsaw00-901 Poland The Department of Computer Engineering Istinye University Sariyer Istanbul34396 Turkey The Tokyo Institute of Technology Tokyo226-8502 Japan
With the rapid advances in computer vision, human action recognition has gradually received attention, but the current methods still exhibit some problems in indoor environments. The human skeleton, as the framework o... 详细信息
来源: 评论
Convection-UNet: A Deep Convolutional Neural Network for Convection Detection based on the Geo High-speed Imager of Fengyun-4B
Convection-UNet: A Deep Convolutional Neural Network for Con...
收藏 引用
Pattern Recognition, Machine Vision and Intelligent Algorithms (PRMVIA), International Conference on
作者: Yufei Wang Baihua Xiao The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences & University of Chinese Academy of Sciences Beijing China The State Key Laboratory of Management and Control for Complex Systems Institute of Automation Chinese Academy of Sciences Beijing China
Deep convection can cause a variety of severe weather conditions such as thunderstorms, strong winds, and heavy rainfall. Satellite observations provide all-weather and multi-directional observations, facilitating the...
来源: 评论
Spatially Dense Multi-Target Track Segment Association Algorithm
Spatially Dense Multi-Target Track Segment Association Algor...
收藏 引用
Chinese control Conference (CCC)
作者: Yan Yao Liping Yan Yuanqing Xia Key Laboratory of Intelligent Control and Decision of Complex Systems School of Automation Beijing Institute of Technology Beijing China
In the field of radar data processing, track interruption seriously affects target tracking, track fusion, and other tasks. The existing track segment association algorithms have low correlation accuracy in dense dist...
来源: 评论
Industrial Internet for intelligent manufacturing:past, present, and future
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2024年 第9期25卷 1173-1192页
作者: Chi XU Haibin YU Xi JIN Changqing XIA Dong LI Peng ZENG State Key Laboratory of Robotics Shenyang Institute of AutomationChinese Academy of SciencesShenyang 110016China Key Laboratory of Networked Control Systems Chinese Academy of SciencesShenyang 110016China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of SciencesShenyang 110169China University of Chinese Academy of Sciences Beijing 100049China
Industrial Internet, motivated by the deep integration of new-generation information and communication technology(ICT) and advanced manufacturing technology, will open up the production chain, value chain, and industr... 详细信息
来源: 评论
Learning Reduced-Order Linear Parameter-Varying Models of Nonlinear systems
收藏 引用
IFAC-PapersOnLine 2024年 第15期58卷 265-270页
作者: Patrick J.W. Koelewijn Rajiv Singh Peter Seiler Roland Tóth Sioux Technologies B.V. Eindhoven The Netherlands Control Systems Group Eindhoven University of Technology Eindhoven The Netherlands The MathWorks Inc. Natick USA Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor USA Systems and Control Laboratory HUN-REN Institute for Computer Science and Control Budapest Hungary
In this paper, we consider the learning of a Reduced-Order Linear Parameter-Varying Model (ROLPVM) of a nonlinear dynamical system based on data. This is achieved by a two-step procedure. In the first step, we learn a... 详细信息
来源: 评论
Fast Depth Estimation of Object via Neural Network Perspective Projection  11
Fast Depth Estimation of Object via Neural Network Perspecti...
收藏 引用
11th IEEE Data Driven control and Learning systems Conference, DDCLS 2022
作者: Han, Yu Chen, Yaran Li, Haoran Ma, Mingjun Zhao, Dongbin Institute of Automation Chinese Academy of Sciences State Key Laboratory of Management and Control for Complex Systems Beijing100190 China University of Chinese Academy of Sciences Beijing100000 China
In autonomous driving and mobile robotic systems, obtaining the depths of objects in real-time is crucial. The current network-based methods usually design complex network to achieve 3D object detection or monocular d... 详细信息
来源: 评论
Plate Shape Prediction Based on Data-Driven in Roll Quenching Process
Plate Shape Prediction Based on Data-Driven in Roll Quenchin...
收藏 引用
2023 China automation Congress, CAC 2023
作者: Hu, Liu Chen, Luefeng Hu, Jie Wu, Min Pedrycz, Witold Hirota, Kaoru School of Automation Ministry of Education China University of Geosciences Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems The Engineering Research Center of Intelligent Technology for Geo-Exploration Wuhan430074 China University of Alberta Department of Electrical and Computer Engineering EdmontonABT6R 2G7 Canada Systems Research Institute Polish Academy of Sciences Warsaw00-901 Poland Istinye University The Department of Computer Engineering Istanbul Sariyer34396 Turkey Tokyo Institute of Technology Tokyo Yokohama226-8502 Japan
In the process of steel plate production, predicting the plate shape is of great significance for producing high-quality and consistently stable plate shapes. This paper presents a model that predicts both the defect ... 详细信息
来源: 评论