咨询与建议

限定检索结果

文献类型

  • 697 篇 期刊文献
  • 524 篇 会议
  • 17 册 图书

馆藏范围

  • 1,238 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 789 篇 工学
    • 558 篇 计算机科学与技术...
    • 460 篇 软件工程
    • 194 篇 信息与通信工程
    • 112 篇 电气工程
    • 108 篇 生物工程
    • 104 篇 控制科学与工程
    • 73 篇 生物医学工程(可授...
    • 69 篇 电子科学与技术(可...
    • 55 篇 光学工程
    • 38 篇 仪器科学与技术
    • 37 篇 安全科学与工程
    • 35 篇 机械工程
    • 35 篇 化学工程与技术
    • 34 篇 网络空间安全
    • 27 篇 交通运输工程
  • 467 篇 理学
    • 233 篇 数学
    • 125 篇 生物学
    • 105 篇 物理学
    • 99 篇 统计学(可授理学、...
    • 47 篇 系统科学
    • 46 篇 化学
  • 253 篇 管理学
    • 158 篇 管理科学与工程(可...
    • 104 篇 图书情报与档案管...
    • 87 篇 工商管理
  • 95 篇 医学
    • 77 篇 临床医学
    • 64 篇 基础医学(可授医学...
    • 40 篇 公共卫生与预防医...
    • 37 篇 药学(可授医学、理...
  • 42 篇 法学
    • 36 篇 社会学
  • 25 篇 经济学
    • 25 篇 应用经济学
  • 23 篇 农学
  • 5 篇 教育学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 40 篇 deep learning
  • 35 篇 machine learning
  • 33 篇 accuracy
  • 32 篇 predictive model...
  • 29 篇 training
  • 24 篇 artificial intel...
  • 23 篇 reinforcement le...
  • 23 篇 computational mo...
  • 20 篇 convolutional ne...
  • 19 篇 forecasting
  • 18 篇 internet of thin...
  • 18 篇 data mining
  • 18 篇 feature extracti...
  • 18 篇 data models
  • 17 篇 optimization
  • 17 篇 federated learni...
  • 16 篇 neural networks
  • 16 篇 analytical model...
  • 15 篇 decision making
  • 15 篇 security

机构

  • 23 篇 school of comput...
  • 20 篇 college of compu...
  • 19 篇 university of ch...
  • 16 篇 laboratory for b...
  • 14 篇 school of comput...
  • 13 篇 science and tech...
  • 12 篇 pillar of inform...
  • 12 篇 shenzhen researc...
  • 11 篇 school of comput...
  • 10 篇 school of data s...
  • 10 篇 the pillar of in...
  • 10 篇 school of comput...
  • 9 篇 nanyang technolo...
  • 9 篇 college of infor...
  • 9 篇 national institu...
  • 9 篇 key laboratory o...
  • 9 篇 school of intell...
  • 9 篇 intelligent inte...
  • 8 篇 faculty of educa...
  • 8 篇 japan atomic ene...

作者

  • 34 篇 niyato dusit
  • 28 篇 xiong zehui
  • 18 篇 kang jiawen
  • 17 篇 du hongyang
  • 11 篇 dan feng
  • 10 篇 brown donald e.
  • 9 篇 uchida hiroyuki
  • 9 篇 kilbourne caroli...
  • 9 篇 tamura keisuke
  • 9 篇 okajima takashi
  • 9 篇 pottschmidt katj...
  • 9 篇 murakami hiroshi
  • 9 篇 markevitch maxim
  • 9 篇 yamaguchi hiroya
  • 9 篇 watanabe shin
  • 9 篇 loewenstein mich...
  • 9 篇 hornschemeier an...
  • 9 篇 enoto teruaki
  • 9 篇 tanimoto atsushi
  • 9 篇 terashima yuichi

语言

  • 979 篇 英文
  • 244 篇 其他
  • 13 篇 中文
  • 3 篇 日文
  • 1 篇 朝鲜文
检索条件"机构=Systems and Information Engineering Data Science"
1238 条 记 录,以下是481-490 订阅
排序:
GPR B-scan data Classification through Deep Learning Approach
GPR B-scan Data Classification through Deep Learning Approac...
收藏 引用
International Conference on Big data and information Analytics (BigDIA)
作者: Yaohong Zhang Kaiming Xiao Kehui Liu Bin Ge Haiwen Chen Donghui Li Laboratory for Big Data and Decision National University of Defense Technology Changsha China Institute of Urban Systems Engineering Beijing Academy of Science and Technology Beijing China College of Information and Intelligence Hunan Agricultural University Changsha China
Ground Penetrating Radar (GPR) has proven indispensable in non-destructive geophysical investigations, offering a window into subsurface structures using electromagnetic waves. Its prowess in identifying underground u...
来源: 评论
Towards Few-shot Inductive Link Prediction on Knowledge Graphs: A Relational Anonymous Walk-guided Neural Process Approach
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Zicheng Luo, Linhao Pan, Shirui Nguyen, Quoc Viet Hung Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Jiangsu Key Laboratory of Image and Video Understanding for Social Security China Department of Data Science and AI Monash University Australia School of Information and Communication Technology Griffith University Australia Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education
Few-shot inductive link prediction on knowledge graphs (KGs) aims to predict missing links for unseen entities with few-shot links observed. Previous methods are limited to transductive scenarios, where entities exist... 详细信息
来源: 评论
Retraction Note: Enabling secure and efficient industry 4.0 transformation through trust-authorized anomaly detection in cloud environments with a hybrid AI approach
收藏 引用
Optical and Quantum Electronics 2024年 第10期56卷 1-2页
作者: Prakash, N. Vignesh, J. Ashwin, M. Ramadass, Sudhir Veeranjaneyulu, N. V. Athawale, Shashikant Ravuri, Ananda Subramanian, Balambigai Department of Information Technology B.S Abdur Rahman Crescent Institute of Science and Technology Vandalur India Department of ISE Jain University Bengaluru India Deparment of Artificial Intelligence and Data Science Koneru Lakshmaiah Education Foundation Vaddeswaram India Sterck Systems Chennai India Department of Information Technology VFSTR Deemed to Be University Vadlamudi Guntur District India Department of Computer Engineering AISSMS COE Pune India Intel Corporation Hillsboro USA Department of ECE Kongu Engineering College Perundurai India
来源: 评论
SWIPT-Enabled MISO Ad Hoc Network Underlay RSMA-based Cellular Network with IRS
SWIPT-Enabled MISO Ad Hoc Network Underlay RSMA-based Cellul...
收藏 引用
IEEE Conference on Vehicular Technology (VTC)
作者: Nguyen Thi Thanh Van Nguyen Cong Luong Feng Shaohan Shimin Gong Dusit Niyato Dong In Kim Faculty of Computer Science PHENIKAA University Hanoi Vietnam School of Information and Electronic Engineering Zhejiang Gongshang University Hangzhou China School of Intelligent Systems Engineering Sun Yat-sen University Guangzhou China College of Computing and Data Sciene Nanyang Technological University Singapore Department of Electrical and Computer Engineering Sungkyunkwan University Suwon South Korea
In this paper, we propose a simultaneous wire-less information and power transfer (SWIPT)-enabled Ad hoc network underlay rate-splitting multiple access (RSMA)-based system with intelligent reflecting surface (IRS). T... 详细信息
来源: 评论
Noise-Robust and Resource-Efficient ADMM-based Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Lari, Ehsan Arablouei, Reza Gogineni, Vinay Chakravarthi Werner, Stefan The Department of Electronic Systems Norwegian University of Science and Technology Trondheim7491 Norway The Department of Information and Communications Engineering Aalto University 00076 Finland The Commonwealth Scientific and Industrial Research Organisation PullenvaleQLD4069 Australia The SDU Applied AI and Data Science The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark Odense5230 Denmark
Federated learning (FL) leverages client-server communications to train global models on decentralized data. However, communication noise or errors can impair model accuracy. To address this problem, we propose a nove... 详细信息
来源: 评论
Exploiting NOMA Transmissions in Multi-UAV-assisted Wireless Networks: From Aerial-RIS to Mode-switching UAVs
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Songhan Gong, Shimin Gu, Bo Li, Lanhua Lyu, Bin Hoang, Dinh Thai Yi, Changyan The School of Intelligent Systems Engineering Shenzhen Campus of Sun Yat-sen University China The Guangdong Provincial Key Laboratory of Fire Science and Intelligent Emergency Technology Guangzhou510006 China The School of Communications and Information Engineering Nanjing University of Posts and Telecommunications China The School of Electrical and Data Engineering University of Technology Sydney Australia The College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics China
In this paper, we consider an aerial reconfigurable intelligent surface (ARIS)-assisted wireless network, where multiple unmanned aerial vehicles (UAVs) collect data from ground users (GUs) by using the non-orthogonal... 详细信息
来源: 评论
Resilience in Online Federated Learning: Mitigating Model-Poisoning Attacks via Partial Sharing
arXiv
收藏 引用
arXiv 2024年
作者: Lari, Ehsan Arablouei, Reza Gogineni, Vinay Chakravarthi Werner, Stefan The Department of Electronic Systems Norwegian University of Science and Technology Trondheim7491 Norway Department of Information and Communications Engineering Aalto University 00076 Finland The Commonwealth Scientific and Industrial Research Organisation PullenvaleQLD4069 Australia The SDU Applied AI and Data Science The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark Odense5230 Denmark
Federated learning (FL) allows training machine learning models on distributed data without compromising privacy. However, FL is vulnerable to model-poisoning attacks where malicious clients tamper with their local mo... 详细信息
来源: 评论
A Method for Predicting Mechanical Properties of Steel Based on Graph Convolutional Networks
SSRN
收藏 引用
SSRN 2024年
作者: Ban, Yunqi Yang, Yang Wang, Xianpeng Wu, Zhiyuan National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University Shenyang110819 China Key Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University Ministry of Education Shenyang110819 China Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry Shenyang China College of Electronic and Information Engineering Tongji University Shanghai201804 China Northeastern University China
In steel materials, several mechanical properties are interrelated and there is an inherent topology structure among these mechanical properties. Based on this motivation, a multitask neural network model based graph ... 详细信息
来源: 评论
Multilayer perceptron ensembles in a truly sparse training context
收藏 引用
Neural Computing and Applications 2025年 1-20页
作者: van der Wal, Peter R. D. Strisciuglio, Nicola Azzopardi, George Mocanu, Decebal Constatin Information Systems Group Bernoulli Institute for Mathematics Computer Science and Artificial Intelligence University of Groningen Nijenborgh 9 Groningen9747 AG Netherlands Data Management and Biometrics Group Faculty of Electrical Engineering Mathematics and Computer Science University of Twente Hallenweg 19 Enschede7522 NH Netherlands Department of Computer Science Faculty of Science Technology and Medicine University of Luxembourg Maison du Nombre 6 avenue de la Fonte Esch4364 Luxembourg
Ensemble learning for artificial neural networks (ANNs) is an effective method to enhance predictive performance. However, ANNs are computationally and memory intensive, and naively training multiple networks can lead... 详细信息
来源: 评论
Overview and Assessment Approaches of Energy Consumption and GHG Emissions Through the Development and Application of Artificial Intelligence - An Example from the Agricultural Sector
Overview and Assessment Approaches of Energy Consumption and...
收藏 引用
IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)
作者: Stefan Rilling Jens Henningsen Katharina Milde Daniel Martini Lorenz Wickert Patricia Kelbert Adaptive Reflective Teams Fraunhofer Institute for Intelligent Analysis and Information Systems IAIS Sankt Augustin Germany Data Science Fraunhofer Institute for Experimental Software Engineering IESE Kaiserslautern Germany Team Digital Technologies Advisory Board for Technology and Construction in Agriculture KTBL Darmstadt Germany
This article looks at the sustainability of various artificial intelligence (AI) methods. In recent months, AI methods have received a great deal of public attention and the benefits for sustainability have been empha... 详细信息
来源: 评论