咨询与建议

限定检索结果

文献类型

  • 559 篇 期刊文献
  • 359 篇 会议
  • 3 册 图书

馆藏范围

  • 921 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 654 篇 工学
    • 436 篇 计算机科学与技术...
    • 368 篇 软件工程
    • 127 篇 信息与通信工程
    • 83 篇 控制科学与工程
    • 82 篇 电子科学与技术(可...
    • 78 篇 光学工程
    • 74 篇 电气工程
    • 70 篇 生物工程
    • 53 篇 生物医学工程(可授...
    • 42 篇 机械工程
    • 38 篇 仪器科学与技术
    • 38 篇 材料科学与工程(可...
    • 36 篇 化学工程与技术
    • 31 篇 动力工程及工程热...
    • 23 篇 网络空间安全
    • 19 篇 交通运输工程
    • 16 篇 土木工程
    • 15 篇 建筑学
  • 369 篇 理学
    • 162 篇 数学
    • 131 篇 物理学
    • 85 篇 生物学
    • 42 篇 化学
    • 40 篇 统计学(可授理学、...
    • 37 篇 系统科学
  • 159 篇 管理学
    • 89 篇 图书情报与档案管...
    • 79 篇 管理科学与工程(可...
    • 24 篇 工商管理
  • 54 篇 医学
    • 46 篇 临床医学
    • 34 篇 基础医学(可授医学...
    • 26 篇 药学(可授医学、理...
  • 15 篇 法学
  • 11 篇 经济学
  • 8 篇 农学
  • 4 篇 军事学
  • 1 篇 哲学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 25 篇 semantics
  • 16 篇 training
  • 14 篇 machine learning
  • 12 篇 deep learning
  • 10 篇 image segmentati...
  • 10 篇 computational mo...
  • 10 篇 visualization
  • 9 篇 object detection
  • 9 篇 optimization
  • 9 篇 embeddings
  • 9 篇 stochastic syste...
  • 9 篇 clustering algor...
  • 8 篇 computer archite...
  • 8 篇 feature extracti...
  • 8 篇 data models
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 7 篇 electroencephalo...
  • 7 篇 educational inst...
  • 7 篇 contrastive lear...

机构

  • 45 篇 state key labora...
  • 37 篇 university of ch...
  • 20 篇 college of compu...
  • 19 篇 state key lab of...
  • 18 篇 state key labora...
  • 17 篇 research center ...
  • 15 篇 ji hua laborator...
  • 14 篇 state key labora...
  • 14 篇 zhongguancun lab...
  • 13 篇 peng cheng labor...
  • 12 篇 department of el...
  • 12 篇 tencent ai lab
  • 12 篇 zhejiang lab
  • 11 篇 state key labora...
  • 11 篇 school of comput...
  • 10 篇 school of electr...
  • 10 篇 tencent youtu la...
  • 10 篇 state key labora...
  • 9 篇 university of sc...
  • 9 篇 school of comput...

作者

  • 11 篇 lihua zhang
  • 11 篇 xu linli
  • 11 篇 yang jian
  • 10 篇 timofte radu
  • 10 篇 liu qi
  • 10 篇 cai deng
  • 10 篇 zhang ming
  • 10 篇 xiaoyang kang
  • 9 篇 xiao zhiping
  • 9 篇 chen chun
  • 9 篇 bu jiajun
  • 9 篇 he xiaofei
  • 8 篇 qiu cheng-wei
  • 8 篇 gao yang
  • 8 篇 liu wei
  • 8 篇 jian yang
  • 8 篇 wang jianxin
  • 7 篇 sun fuchun
  • 7 篇 xu tong
  • 7 篇 wei mu

语言

  • 823 篇 英文
  • 74 篇 其他
  • 25 篇 中文
检索条件"机构=TCA Lab of State Key Laboratory of Computer Science"
921 条 记 录,以下是681-690 订阅
排序:
A cross population study of retinal aging biomarkers with longitudinal pre-training and label distribution learning
收藏 引用
npj Digital Medicine 2025年 第1期8卷 1-14页
作者: Yu, Zhen Chen, Ruiye Gui, Peng Wang, Wei Razzak, Imran Alinejad-Rokny, Hamid Zeng, Xiaomin Shang, Xianwen Zhang, Lei Yang, Xiaohong Yu, Honghua Huang, Wenyong Lu, Huimin van Wijngaarden, Peter He, Mingguang Zhu, Zhuoting Ge, Zongyuan The AIM for Health Lab Monash University Melbourne VIC Australia Faculty of Information Technology Monash University Melbourne VIC Australia Centre for Eye Research Australia University of Melbourne Melbourne VIC Australia Ophthalmology Department of Surgery University of Melbourne Melbourne VIC Australia School of Computer Science and Engineering Artificial Intelligence Wuhan Institute of Technology Wuhan China State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-sen University Guangzhou China Department of Computational Biology MBZUAI Abu Dhabi United Arab Emirates Graduate School of Biomedical Engineering University of New South Wales Sydney NSW Australia School of Optometry The Hong Kong Polytechnic University Hong Kong School of Translational Medicine Monash University Melbourne VIC Australia Department of Ophthalmology Guangdong Academy of Medical Sciences Guangdong Provincial People’s Hospital Guangzhou China School of Automation Southeast University Nanjing China Monash-Airdoc Research Centre Melbourne VIC Australia
Retinal age has emerged as a promising biomarker of aging, offering a non-invasive and accessible assessment tool. We developed a deep learning model to estimate retinal age with enhanced accuracy, leveraging retinal ...
来源: 评论
Smart radio environments
arXiv
收藏 引用
arXiv 2021年
作者: Gradoni, Gabriele Renzo, Marco Di Díaz-Rubio, Ana Tretyakov, Sergei A. Caloz, Christophe Gradoni, Gabriele Peng, Zhen Alu, Andrea Lerosey, Geoffroy Fink, Mathias Galdi, Vincenzo Cui, Tie Jun Frazier, Benjamin W. Anlage, Steven M. Salucci, Marco Massa, Andrea Cheng, Qiang Wang, Jinghe Jin, Shi Dardari, Davide Decarli, Nicoló Yurduseven, Okan Matthaiou, Michail Kenney, Mitchell Gordon, George Georgiou, Orestis Nguyen, Cam Ly Martini, Enrica Maci, Stefano Wakatsuchi, Hiroki Phang, Sendy School of Mathematical Sciences Department of Electrical and Electronic Engineering University of Nottingham Nottingham United Kingdom Laboratoire des Signaux et Systémes CNRS CentraleSupélec Université Paris-Saclay Gif-sur-Yvette Paris France Department of of Electronics and Nanoengineering Aalto University Espoo Finland META Research Group KU Leuven Belgium School of Mathematical Sciences Department of Electrical and Electronic Engineering University of Nottingham University Park NG72RD United Kingdom Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign IL United States Advanced Science Research Center City University of New York United States Greenerwave 6 rue Jean Calvin Paris75005 France Institut Langevin 1 rue Jussieu Paris75005 France Fields & Waves Lab Department of Engineering University of Sannio Benevento Italy State Key Laboratory of Millimeter Waves Southeast University Nanjing China Applied Physics Laboratory Johns Hopkins University LaurelMD20723 United States Department of Electrical and Computer Engineering Department of Physics Quantum Materials Center University of Maryland College ParkMD20742 United States Trento Italy Chengdu China Beijing China Institute of Electromagnetic Space State Key Laboratory of Millimeter Waves Southeast University Nanjing210096 China National Mobile Communications Research Laboratory Southeast University Nanjing China University of Bologna Bologna Italy Bologna Italy Centre for Wireless Innovation Institute of Electronics Communications and Information Technology Queen’s University Belfast Belfast United Kingdom Department of Electrical and Electronic Engineering University of Nottingham Nottingham United Kingdom Department of Electrical and Computer Engineering University of Cyprus Nicosia Cyprus Wireless System Laboratory Corporate Research & Development Center Toshiba Corporation Kawasaki Japan Department of Information Engineering an
This Roadmap takes the reader on a journey through the research in electromagnetic wave propagation control via reconfigurable intelligent surfaces. Meta-surface modelling and design methods are reviewed along with ph... 详细信息
来源: 评论
Fast stochastic ordinal embedding with variance reduction and adaptive step size
arXiv
收藏 引用
arXiv 2019年
作者: Ma, Ke Zeng, Jinshan Xiong, Jiechao Xu, Qianqian Cao, Xiaochun Liu, Wei Yao, Yuan School of Computer Science and Technology University of Chinese Academy of Sciences Beijing100049 China Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen518055 China School of Computer Information Engineering Jiangxi Normal University NanchangJiangxi330022 China Tencent AI Lab Shenzhen Guangdong China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China State Key Laboratory of Information Security Institute of Information Engineering Chinese Academy of Sciences Beijing100093 China Cyberspace Security Research Center Peng Cheng Laboratory Shenzhen518055 China School of Cyber Security University of Chinese Academy of Sciences Beijing100049 China Department of Mathematics and by courtesy Department of Computer Science and Engineering Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
—Learning representation from relative similarity comparisons, often called ordinal embedding, gains rising attention in recent years. Most of the existing methods are based on semi-definite programming (SDP), which ... 详细信息
来源: 评论
Load balancing for ultra-dense networks: A deep reinforcement learning based approach
arXiv
收藏 引用
arXiv 2019年
作者: Xu, Yue Xu, Wenjun Wang, Zhi Lin, Jiaru Cui, Shuguang Key Lab of Universal Wireless Communications Ministry of Education Beijing University of Posts and Telecommunications Beijing100876 China State Key Laboratory of Networking and Switching Technology Beijing University of Posts and Telecommunications Beijing100876 China Shenzhen Research Institute of Big Data School of Science and Engineering Chinese University of Hong Kong Shenzhen518172 China Department of Electrical and Computer Engineering University of California DavisCA95616 United States
—In this paper, we propose a deep reinforcement learning (DRL) based mobility load balancing (MLB) algorithm along with a two-layer architecture to solve the large-scale load balancing problem for ultra-dense network... 详细信息
来源: 评论
In-plane selective area InSb-Al nanowire quantum networks
arXiv
收藏 引用
arXiv 2021年
作者: Op het Veld, Roy L.M. Xu, Di Schaller, Vanessa Verheijen, Marcel A. Peters, Stan M.E. Jung, Jason Tong, Chuyao Wang, Qingzhen de Moor, Michiel W.A. Hesselmann, Bart Vermeulen, Kiefer Bommer, Jouri D.S. Lee, Joon Sue Sarikov, Andrey Pendharkar, Mihir Marzegalli, Anna Koelling, Sebastian Kouwenhoven, Leo P. Miglio, Leo Palmstrom, Chris J. Zhang, Hao Bakkers, Erik P.A.M. Department of Applied Physics Eindhoven University of Technology Eindhoven5600MB Netherlands QuTech and Kavli Institute of Nanoscience Delft University of Technology Delft2600GA Netherlands Eurofins Materials Science Eindhoven High Tech Campus 11 Eindhoven5656AE Netherlands California NanoSystems Institute University of California Santa BarbaraCA93106 United States L-NESS Dept. of Materials Science University of Milano-Bicocca MilanoI-20125 Italy V. Lashkarev Institute of Semiconductor Physics National Academy of Sciences of Ukraine Kiev Ukraine L-NESS Dept. of Physics Politecnico di Milano ComoI-22100 Italy Microsoft Quantum Lab Delft Delft2600GA Netherlands Electrical and Computer Engineering University of California Santa BarbaraCA93106 United States Materials Department University of California Santa BarbaraCA93106 United States State Key Laboratory of Low Dimensional Quantum Physics Department of Physics Tsinghua University Beijing100084 China Beijing Academy of Quantum Information Sciences Beijing100193 China
Strong spin-orbit semiconductor nanowires coupled to a superconductor are predicted to host Majorana zero modes. Exchange (braiding) operations of Majorana modes form the logical gates of a topological quantum compute... 详细信息
来源: 评论
Joint learning of discriminative low-dimensional image representations based on dictionary learning and two-layer orthogonal projections
arXiv
收藏 引用
arXiv 2019年
作者: Wei, Xian Shen, Hao Li, Yuanxiang Tang, Xuan Jin, Bo Zhao, Lijun Murphey, Yi Lu Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences China Technical University of Munich Germany and fortiss GmbH Munich Germany Shanghai Key Lab for Trustworthy Computing School of Computer Science and Software Engineering East China Normal University China School of Aeronautics & Astronautics Shanghai Jiao Tong University Shanghai200240 China State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin150006 China Department of Electrical and Computer Engineering University of Michigan-Dearborn DearbornMI48128 United States
This work investigates the problem of efficiently learning discriminative low-dimensional representations of multi-class large-scale image objects. We propose a generic deep learning approach by taking advantages of C... 详细信息
来源: 评论
Small P values may not yield robust findings:an example using REST-meta-PD
收藏 引用
science Bulletin 2021年 第21期66卷 2148-2152,M0003页
作者: Xi-Ze Jia Na Zhao Hao-Ming Dong Jia-Wei Sun Marek Barton Roxana Burciu Nicolas Carrière Antonio Cerasa Bo-Yu Chen Jun Chen Stephen Coombes Luc Defebvre Christine Delmaire Kathy Dujardin Fabrizio Esposito Guo-Guang Fan Federica Di Nardo Yi-Xuan Feng Brett W.Fling Saurabh Garg Moran Gilat Martin Gorges Shu-Leong Ho Fay BHorak Xiao Hu Xiao-Fei Hu Biao Huang Pei-Yu Huang Ze-Juan Jia Christina Jones Jan Kassubek Lenka Krajcovicova Ajay Kurani Jing Li Qing Li Ai-Ping Liu Bo Liu Hu Liu Wei-Guo Liu Renaud Lopes Yu-Ting Lou Wei Luo Tara Madhyastha Ni-Ni Mao Grainne McAlonan Martin J.McKeown Shirley Pang Andrea Quattrone Irena Rektorova Alessia Sarica Hui-Fang Shang James M.Shine Priyank Shukla Tomas Slavicek Xiao-Peng Song Gioacchino Tedeschi Alessandro Tessitore David Vaillancourt Jian Wang Jue Wang Z.Jane Wang Lu-Qing Wei Xia Wu Xiao-Jun Xu Lei Yan Jing Yang Wan-Qun Yang Nai-Lin Yao De-Long Zhang Jiu-Quan Zhang Min-Ming Zhang Yan-Ling Zhang Cai-Hong Zhou Chao-Gan Yan Xi-Nian Zuo Mark Hallett Tao Wu Yu-Feng Zang Center for Cognition and Brain Disorders the Affiliated HospitalHangzhou Normal UniversityHangzhou 310015China Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments Hangzhou 311121China National Basic Science Data Center Beijing 100190China State Key Laboratory of Cognitive Neuroscience and Learning&McGovern Institute for Brain Research Beijing Normal UniversityBeijing 100875China School of Information and Electronics Technology Jiamusi UniversityJiamusi 154007China Neuroscience Program Central European Institute of TechnologyCEITECMasaryk UniversityBrno 62500Czech Republic Department of Applied Physiology and Kinesiology University of FloridaGainesville FL 32611USA Univ.Lille InsermCHU LilleU1172-LilNCog-Lille Neuroscience&CognitionLille F-59000France The Institute for Biomedical Research and Innovation National Research CouncilMangone CS 87050Italy Department of Radiology The First Affiliated Hospital of China Medical UniversityShenyang 110001China Department of Radiology Guangdong Provincial Hospital of Chinese MedicineGuangzhou 510120China Department of Medicine Surgery and DentistryScuola Medica SalernitanaUniversity of SalernoFiscianoSA 132-84084Italy Department of Advanced Medical and Surgery Sciences University of Campania“Luigi Vanvitelli”Caserta 81100Italy Eye Center of the 2nd Affiliated Hospital Medical College of Zhejiang UniversityHangzhou 310020China Zhejiang Provincial Key Lab of Ophthalmology Hangzhou 310020China Department of Health and Exercise Science Colorado State UniversityFort Collins CO 80523USA Pacific Parkinson’s Research Centre University of British ColumbiaVancouver BC V6E 2M6Canada Department of Medicine(Neurology)University of British Columbia Vancouver BC V6T 1B7Canada Brain and Mind Center The University of SydneySydney NSW 2006Australia Department of Neurology Ulm UniversityUlm 89081Germany Division of Neurology Department of MedicineQueen Mary HospitalUniversity of Hong KongHong Kong 999077China Department of
Thousands of resting state functional magnetic resonance imaging(RS-f MRI)articles have been published on brain *** precise localization of abnormal brain activity,a voxel-level comparison is *** of the large number o... 详细信息
来源: 评论
Variational quantum circuits for quantum state tomography
arXiv
收藏 引用
arXiv 2019年
作者: Liu, Yong Wang, Dongyang Xue, Shichuan Huang, Anqi Fu, Xiang Qiang, Xiaogang Xu, Ping Huang, He-Liang Deng, Mingtang Guo, Chu Yang, Xuejun Wu, Junjie Institute for Quantum Information & State Key Laboratory of High Performance Computing College of Computer National University of Defense Technology Changsha410073 China National Innovation Institute of Defense Technology AMS Beijing100071 China Henan Key Laboratory of Quantum Information and Cryptography IEU Zhengzhou450001 China Hefei National Laboratory for Physical Sciences at Microscale Department of Modern Physics University of Science and Technology of China HefeiAnhui230026 China CAS Centre for Excellence Synergetic Innovation Centre in Quantum Information and Quantum Physics University of Science and Technology of China Hefei Anhui230026 China Quantum Intelligence Lab Supremacy Future Technologies Guangzhou511340 China
We propose a hybrid quantum-classical algorithm for quantum state tomography. Given an unknown quantum state, a quantum machine learning algorithm is used to maximize the fidelity between the output of a variational q... 详细信息
来源: 评论
Personalized gesture interactions for cyber-physical smart-home environments
收藏 引用
science China(Information sciences) 2017年 第7期60卷 144-158页
作者: Yihua LOU Wenjun WU Radu-Daniel VATAVU Wei-Tek TSAI State Key Laboratory of Software Development Environment Beihang University Mint Viz Research Lab Integrated Center for Research Developmentand Innovation in Advanced MaterialsNanotechnologies and Distributed Systems for Fabrication and Control (MANSiD) & Department of Computer Science University Stefan cel Mare of Suceava
A gesture-based interaction system for smart homes is a part of a complex cyber-physical environment, for which researchers and developers need to address major challenges in providing personalized gesture interaction... 详细信息
来源: 评论
Graduate employment prediction with bias
arXiv
收藏 引用
arXiv 2019年
作者: Guo, Teng Xia, Feng Zhen, Shihao Bai, Xiaomei Zhang, Dongyu Liu, Zitao Tang, Jiliang Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province Dalian University of Technology Dalian116620 China School of Science Engineering and Information Technology Federation University Australia BallaratVIC3353 Australia Computing Center Anshan Normal University Anshan114007 China TAL AI Lab TAL Education Group Beijing100080 China Department of Computer Science and Engineering Michigan State University East LansingMI48824 United States
The failure of landing a job for college students could cause serious social consequences such as drunkenness and suicide. In addition to academic performance, unconscious biases can become one key obstacle for huntin... 详细信息
来源: 评论