咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 生物学
  • 1 篇 工学
    • 1 篇 计算机科学与技术...
    • 1 篇 生物工程

主题

  • 1 篇 deep neural netw...

机构

  • 2 篇 department of co...
  • 1 篇 texas advanced c...
  • 1 篇 texas advanced c...
  • 1 篇 department of el...
  • 1 篇 department of el...

作者

  • 1 篇 zhang zhao
  • 1 篇 maryam mehri deh...
  • 1 篇 mohammad mozaffa...
  • 1 篇 mozaffari mohamm...
  • 1 篇 mehri dehnavi ma...
  • 1 篇 zhao zhang
  • 1 篇 sikan li
  • 1 篇 li sikan

语言

  • 1 篇 英文
  • 1 篇 其他
检索条件"机构=Texas Advanced Computing Server"
2 条 记 录,以下是1-10 订阅
排序:
MKOR: momentum-enabled kronecker-factor-based optimizer using rank-1 updates  23
MKOR: momentum-enabled kronecker-factor-based optimizer usin...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Mohammad Mozaffari Sikan Li Zhao Zhang Maryam Mehri Dehnavi Department of Computer Science University of Toronto Texas Advanced Computing Server Department of Electrical and Computer Engineering Rutgers University
This work proposes a Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates, called MKOR, that improves the training time and convergence properties of deep neural networks (DNNs). Second-order techniq...
来源: 评论
MKOR: Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates
arXiv
收藏 引用
arXiv 2023年
作者: Mozaffari, Mohammad Li, Sikan Zhang, Zhao Mehri Dehnavi, Maryam Department of Computer Science University of Toronto Canada Texas Advanced Computing Server United States Department of Electrical and Computer Engineering Rutgers University United States
This work proposes a Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 Updates, called MKOR, that improves the training time and convergence properties of deep neural networks (DNNs). Second-order techniq... 详细信息
来源: 评论