咨询与建议

限定检索结果

文献类型

  • 62 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 76 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 67 篇 工学
    • 65 篇 计算机科学与技术...
    • 57 篇 软件工程
    • 18 篇 信息与通信工程
    • 6 篇 生物工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 冶金工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
  • 30 篇 管理学
    • 29 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 20 篇 理学
    • 10 篇 数学
    • 6 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 地质学
  • 5 篇 文学
    • 5 篇 中国语言文学
    • 5 篇 外国语言文学
  • 3 篇 教育学
    • 3 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 6 篇 semantics
  • 5 篇 natural language...
  • 4 篇 classification (...
  • 3 篇 knowledge engine...
  • 3 篇 social networkin...
  • 3 篇 sentiment analys...
  • 2 篇 learning algorit...
  • 2 篇 terminology
  • 2 篇 graphic methods
  • 2 篇 computational li...
  • 2 篇 information retr...
  • 2 篇 morphology
  • 2 篇 forecasting
  • 2 篇 ontology
  • 1 篇 surveys
  • 1 篇 genetic programm...
  • 1 篇 knowledge based ...
  • 1 篇 computation theo...
  • 1 篇 spatiotemporal c...
  • 1 篇 3gpp

机构

  • 19 篇 university of za...
  • 19 篇 text analysis an...
  • 4 篇 university of za...
  • 3 篇 text knowledge e...
  • 2 篇 text analysis an...
  • 2 篇 university of za...
  • 2 篇 text knowledge e...
  • 2 篇 text analysis an...
  • 2 篇 department of me...
  • 1 篇 freiburg univers...
  • 1 篇 freiburg univers...
  • 1 篇 text analysis an...
  • 1 篇 text knowledge e...
  • 1 篇 medical informat...
  • 1 篇 text knowledge e...
  • 1 篇 ku leuven depart...
  • 1 篇 text and data mi...
  • 1 篇 medical informat...
  • 1 篇 department of me...
  • 1 篇 text knowledge e...

作者

  • 47 篇 šnajder jan
  • 17 篇 hahn udo
  • 8 篇 karan mladen
  • 8 篇 schulz stefan
  • 7 篇 tutek martin
  • 7 篇 glavaš goran
  • 6 篇 snajder jan
  • 6 篇 medić zoran
  • 6 篇 jukić josip
  • 5 篇 alagić domagoj
  • 4 篇 schnattinger kle...
  • 4 篇 boltužić filip
  • 4 篇 jelenić fran
  • 3 篇 gjurković matej
  • 3 篇 romacker martin
  • 3 篇 sekulić ivan
  • 3 篇 wermter joachim
  • 2 篇 akkasi abbas
  • 2 篇 buljan maja
  • 2 篇 vulić ivan

语言

  • 70 篇 英文
  • 6 篇 其他
检索条件"机构=Text Knowledge Engineering Lab"
76 条 记 录,以下是31-40 订阅
排序:
Debunking sentiment lexicons: A case of domain-specific sentiment classification for Croatian  6
Debunking sentiment lexicons: A case of domain-specific sent...
收藏 引用
6th Workshop on Balto-Slavic Natural Language Processing, BSNLP 2017 at the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
作者: Gombar, Paula Medić, Zoran Alagić, Domagoj Šnajder, Jan Text Analysis and Knowledge Engineering Lab Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb10000 Croatia
Sentiment lexicons are widely used as an intuitive and inexpensive way of tackling sentiment classification, often within a simple lexicon word-counting approach or as part of a supervised model. However, it is an ope... 详细信息
来源: 评论
A preliminary study of croatian lexical substitution  6
A preliminary study of croatian lexical substitution
收藏 引用
6th Workshop on Balto-Slavic Natural Language Processing, BSNLP 2017 at the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
作者: Alagić, Domagoj Šnajder, Jan Text Analysis and Knowledge Engineering Lab Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb10000 Croatia
Lexical substitution is a task of determining a meaning-preserving replacement for a word in context. We report on a preliminary study of this task for the Croatian language on a small-scale lexical sample dataset, ma...
来源: 评论
Linguistic features and Newsworthiness: An analysis of news style  4
Linguistic features and Newsworthiness: An analysis of news ...
收藏 引用
4th Italian Conference on Computational Linguistics, CLiC-it 2017
作者: Pia di Buono, Maria Snajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
In this paper, we present a preliminary study on the style of headlines in order to evaluate the correlation between linguistic features and newsworthiness. Our hypothesis is that each particular linguistic form or st...
来源: 评论
Combining Linguistic Features for the Detection of Croatian Multiword Expressions  13
Combining Linguistic Features for the Detection of Croatian ...
收藏 引用
13th Workshop on Multiword Expressions, MWE 2017 - in conjunction with the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
作者: Buljan, Maja Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
As multiword expressions (MWEs) exhibit a range of idiosyncrasies, their automatic detection warrants the use of many different features. Tsvetkov and Wintner (2014) proposed a Bayesian network model that combines lin... 详细信息
来源: 评论
Takelab at SemEval-2017 Task 5: Linear Aggregation of Word Embeddings for Fine-Grained Sentiment Analysis on Financial News  11
TakeLab at SemEval-2017 Task 5: Linear Aggregation of Word E...
收藏 引用
11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Rotim, Leon Tutek, Martin Šnajder, Jan Text Analysis and Knowledge Engineering Lab Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb10000 Croatia
This paper describes our system for fine-grained sentiment scoring of news headlines submitted to SemEval 2017 task 5, subtask 2. Our system uses a feature-light method that consists of a Support Vector Regression (SV... 详细信息
来源: 评论
Takelab at SemEval-2017 Task 6: #RankingHumorIn4Pages  11
TakeLab at SemEval-2017 Task 6: #RankingHumorIn4Pages
收藏 引用
11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Kukovačec, Marin Malenica, Juraj Mršić, Ivan Šajatović, Antonio Alagić, Domagoj Šnajder, Jan Text Analysis and Knowledge Engineering Lab Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb10000 Croatia
This paper describes our system for humor ranking in tweets within the SemEval 2017 Task 6: #HashtagWars (6A and 6B). For both subtasks, we use an off-the-shelf gradient boosting model built on a rich set of features,...
来源: 评论
Toward stance classification based on claim microstructures  8
Toward stance classification based on claim microstructures
收藏 引用
8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, WASSA 2017, in conjunction with the Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: Boltužić, Filip Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
Claims are the building blocks of arguments and the reasons underpinning opinions, thus analyzing claims is important for both argumentation mining and opinion mining. We propose a framework for representing claims as... 详细信息
来源: 评论
Takelab at SemEval-2017 Task 4: Recent Deaths and the Power of Nostalgia in Sentiment Analysis in Twitter  11
TakeLab at SemEval-2017 Task 4: Recent Deaths and the Power ...
收藏 引用
11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Lozić, David Šarić, Doria Tokić, Ivan Medić, Zoran Šnajder, Jan Text Analysis and Knowledge Engineering Lab Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb10000 Croatia
This paper describes the system we submitted to SemEval-2017 Task 4 (Sentiment Analysis in Twitter), specifically subtasks A, B, and D. Our main focus was topic-based message polarity classification on a two-point sca... 详细信息
来源: 评论
Comparison of short-text sentiment analysis methods for Croatian  6
Comparison of short-text sentiment analysis methods for Croa...
收藏 引用
6th Workshop on Balto-Slavic Natural Language Processing, BSNLP 2017 at the 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017
作者: Rotim, Leon Šnajder, Jan Text Analysis and Knowledge Engineering Lab Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb10000 Croatia
We focus on the task of supervised sentiment classification of short and informal texts in Croatian, using two simple yet effective methods: word embeddings and string kernels. We investigate whether word embeddings o... 详细信息
来源: 评论
Takelab-QA at SemEval-2017 Task 3: Classification Experiments for Answer Retrieval in Community QA  11
TakeLab-QA at SemEval-2017 Task 3: Classification Experiment...
收藏 引用
11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
作者: Šaina, Filip Kukurin, Toni Puljić, Lukrecija Karan, Mladen Šnajder, Jan Text Analysis and Knowledge Engineering Lab Faculty of Electrical Engineering and Computing University of Zagreb Unska 3 Zagreb10000 Croatia
In this paper we present the Takelab-QA entry to SemEval 2017 task 3, which is a question-comment re-ranking problem. We present a classification based approach, including two supervised learning models - Support Vect... 详细信息
来源: 评论