咨询与建议

限定检索结果

文献类型

  • 62 篇 会议
  • 14 篇 期刊文献

馆藏范围

  • 76 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 67 篇 工学
    • 65 篇 计算机科学与技术...
    • 57 篇 软件工程
    • 18 篇 信息与通信工程
    • 6 篇 生物工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 机械工程
    • 1 篇 冶金工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
  • 30 篇 管理学
    • 29 篇 图书情报与档案管...
    • 1 篇 管理科学与工程(可...
  • 20 篇 理学
    • 10 篇 数学
    • 6 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 地质学
  • 5 篇 文学
    • 5 篇 中国语言文学
    • 5 篇 外国语言文学
  • 3 篇 教育学
    • 3 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 6 篇 semantics
  • 5 篇 natural language...
  • 4 篇 classification (...
  • 3 篇 knowledge engine...
  • 3 篇 social networkin...
  • 3 篇 sentiment analys...
  • 2 篇 learning algorit...
  • 2 篇 terminology
  • 2 篇 graphic methods
  • 2 篇 computational li...
  • 2 篇 information retr...
  • 2 篇 morphology
  • 2 篇 forecasting
  • 2 篇 ontology
  • 1 篇 surveys
  • 1 篇 genetic programm...
  • 1 篇 knowledge based ...
  • 1 篇 computation theo...
  • 1 篇 spatiotemporal c...
  • 1 篇 3gpp

机构

  • 19 篇 university of za...
  • 19 篇 text analysis an...
  • 4 篇 university of za...
  • 3 篇 text knowledge e...
  • 2 篇 text analysis an...
  • 2 篇 university of za...
  • 2 篇 text knowledge e...
  • 2 篇 text analysis an...
  • 2 篇 department of me...
  • 1 篇 freiburg univers...
  • 1 篇 freiburg univers...
  • 1 篇 text analysis an...
  • 1 篇 text knowledge e...
  • 1 篇 medical informat...
  • 1 篇 text knowledge e...
  • 1 篇 ku leuven depart...
  • 1 篇 text and data mi...
  • 1 篇 medical informat...
  • 1 篇 department of me...
  • 1 篇 text knowledge e...

作者

  • 47 篇 šnajder jan
  • 17 篇 hahn udo
  • 8 篇 karan mladen
  • 8 篇 schulz stefan
  • 7 篇 tutek martin
  • 7 篇 glavaš goran
  • 6 篇 snajder jan
  • 6 篇 medić zoran
  • 6 篇 jukić josip
  • 5 篇 alagić domagoj
  • 4 篇 schnattinger kle...
  • 4 篇 boltužić filip
  • 4 篇 jelenić fran
  • 3 篇 gjurković matej
  • 3 篇 romacker martin
  • 3 篇 sekulić ivan
  • 3 篇 wermter joachim
  • 2 篇 akkasi abbas
  • 2 篇 buljan maja
  • 2 篇 vulić ivan

语言

  • 70 篇 英文
  • 6 篇 其他
检索条件"机构=Text Knowledge Engineering Lab"
76 条 记 录,以下是41-50 订阅
排序:
Takelab at SemEval-2016 Task 6: Stance classification in tweets using a genetic algorithm based ensemble  10
TakeLab at SemEval-2016 Task 6: Stance classification in twe...
收藏 引用
10th International Workshop on Semantic Evaluation, SemEval 2016
作者: Tutek, Martin Sekulić, Ivan Gombar, Paula Paljak, Ivan Čulinović, Filip Boltužić, Filip Karan, Mladen Alagić, Domagoj Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
This paper describes our system for the detection of stances in tweets submitted to SemEval 2016 Task 6A. The system uses an ensemble of learning algorithms, fine-tuned using a genetic algorithm. We experiment with va... 详细信息
来源: 评论
VERBCROCEAN: A repository of fine-grained semantic verb relations for Croatian  10
VERBCROCEAN: A repository of fine-grained semantic verb rela...
收藏 引用
10th International Conference on Language Resources and Evaluation, LREC 2016
作者: Sekulić, Ivan Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
In this paper we describe VERBCROCEAN, a broad-coverage repository of fine-grained semantic relations between Croatian verbs. Adopting the methodology of Chklovski and Pantel (2004) used for acquiring the English Verb... 详细信息
来源: 评论
Cro36WSD: A lexical sample for Croatian word sense disambiguation  10
Cro36WSD: A lexical sample for Croatian word sense disambigu...
收藏 引用
10th International Conference on Language Resources and Evaluation, LREC 2016
作者: Alagić, Domagoj Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
We introduce Cro36WSD, a freely-available medium-sized lexical sample for Croatian word sense disambiguation (WSD). Cro36WSD comprises 36 words: 12 adjectives, 12 nouns, and 12 verbs, balanced across both frequency ba... 详细信息
来源: 评论
Fill the Gap! Analyzing Implicit Premises between Claims from Online Debates  3
Fill the Gap! Analyzing Implicit Premises between Claims fro...
收藏 引用
3rd Workshop on Argument Mining, ArgMining 2016, held at the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016
作者: Boltuzic, Filip Snajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
Identifying the main claims occurring across texts is important for large-scale argumentation mining from social media. However, the claims that users make are often unclear and build on implicit knowledge, effectivel...
来源: 评论
Graph-based induction of word senses in Croatian  10
Graph-based induction of word senses in Croatian
收藏 引用
10th International Conference on Language Resources and Evaluation, LREC 2016
作者: Bekavac, Marko Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
Word sense induction (WSI) seeks to induce senses of words from unannotated corpora. In this paper, we address the WSI task for the Croatian language. We adopt the word clustering approach based on co-occurrence graph... 详细信息
来源: 评论
Social media argumentation mining: the quest for deliberateness in raucousness∗
arXiv
收藏 引用
arXiv 2016年
作者: Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Zagreb Croatia
来源: 评论
TAKElab: Medical Information Extraction and Linking with MINERAL  9
TAKELAB: Medical Information Extraction and Linking with MIN...
收藏 引用
9th International Workshop on Semantic Evaluation, SemEval 2015
作者: Glavaš, Goran University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
Medical texts are filled with mentions of diseases, disorders, and other clinical conditions, with many different surface forms relating to the same condition. We describe MINERAL, a system for extraction and normaliz... 详细信息
来源: 评论
Identifying Prominent Arguments in Online Debates Using Semantic textual Similarity  2
Identifying Prominent Arguments in Online Debates Using Sema...
收藏 引用
2nd Workshop on Argumentation Mining, ArgMining 2015 at the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2015
作者: Boltužić, Filip Šnajder, Jan University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
Online debates sparkle argumentative discussions from which generally accepted arguments often emerge. We consider the task of unsupervised identification of prominent argument in online debates. As a first step, in t... 详细信息
来源: 评论
Modeling semantic compositionality of croatian multiword expressions
Modeling semantic compositionality of croatian multiword exp...
收藏 引用
作者: Snajder, Jan Almic, Petra University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia
A distinguishing feature of many multiword expressions (MWEs) is their semantic non-compositionality. Determining the semantic compositionality of MWEs is important for many natural language processing tasks. We addre... 详细信息
来源: 评论
TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay  9
TKLBLIIR: Detecting Twitter Paraphrases with TweetingJay
收藏 引用
9th International Workshop on Semantic Evaluation, SemEval 2015
作者: Karan, Mladen Glavaš, Goran Šnajder, Jan Bašić, Bojana Dalbelo Vulić, Ivan Moens, Marie-Francine University of Zagreb Faculty of Electrical Engineering and Computing Text Analysis and Knowledge Engineering Lab Unska 3 Zagreb10000 Croatia KU Leuven Department of Computer Science Language Intelligence Information Retrieval Group Celestijnenlaan 200A Leuven Belgium
When tweeting on a topic, Twitter users often post messages that convey the same or similar meaning. We describe TweetingJay, a system for detecting paraphrases and semantic similarity of tweets, with which we partici... 详细信息
来源: 评论