咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 32 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 14 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 10 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 测绘科学与技术
    • 3 篇 生物工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 电气工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 交通运输工程
    • 1 篇 农业工程
  • 5 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 2 篇 生物学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 4 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 4 篇 reinforcement le...
  • 3 篇 robots
  • 3 篇 semantics
  • 2 篇 automation
  • 2 篇 visualization
  • 2 篇 measurement
  • 2 篇 training
  • 1 篇 performance gain
  • 1 篇 roads
  • 1 篇 deep learning
  • 1 篇 magnetic resonan...
  • 1 篇 task analysis
  • 1 篇 utilize
  • 1 篇 propioception
  • 1 篇 three-dimensiona...
  • 1 篇 missiles
  • 1 篇 image segmentati...
  • 1 篇 anomaly detectio...
  • 1 篇 continuing educa...
  • 1 篇 signal encoding

机构

  • 2 篇 baidu
  • 2 篇 key lab of intel...
  • 2 篇 archimedes/athen...
  • 2 篇 robotics percept...
  • 2 篇 laboratory of ad...
  • 2 篇 the advanced per...
  • 2 篇 ihu strasbourg s...
  • 2 篇 department of su...
  • 2 篇 alibaba group
  • 2 篇 department of in...
  • 2 篇 lab istituto ita...
  • 2 篇 active perceptio...
  • 1 篇 department of ps...
  • 1 篇 electrical engin...
  • 1 篇 the discipline o...
  • 1 篇 university of sc...
  • 1 篇 active perceptio...
  • 1 篇 huzhou institute...
  • 1 篇 visual artificia...
  • 1 篇 ai centre depart...

作者

  • 6 篇 liu yong
  • 3 篇 dai guang
  • 3 篇 xing jiazheng
  • 3 篇 chen fei
  • 3 篇 poni stefano
  • 3 篇 teng tao
  • 3 篇 wang mengmeng
  • 3 篇 semini claudio
  • 3 篇 fiameni giuseppe
  • 3 篇 caldwell darwin
  • 3 篇 fernandes miguel
  • 3 篇 scaldaferri anto...
  • 3 篇 gatti matteo
  • 3 篇 wang jingdong
  • 2 篇 kragic danica
  • 2 篇 petter ögren
  • 2 篇 hang kaiyu
  • 2 篇 jiao jianhao
  • 2 篇 kanoulas dimitri...
  • 2 篇 yong liu

语言

  • 30 篇 英文
  • 2 篇 其他
检索条件"机构=The Advanced Perception on Robotics and Intelligent Learning Lab"
32 条 记 录,以下是1-10 订阅
排序:
learning to Model Diverse Driving Behaviors in Highly Interactive Autonomous Driving Scenarios With Multiagent Reinforcement learning
收藏 引用
IEEE Systems Journal 2025年 第1期19卷 317-326页
作者: Liu, Weiwei Hu, Wenxuan Jing, Wei Lei, Lanxin Gao, Lingping Liu, Yong Zhejiang University The Advanced Perception on Robotics and Intelligent Learning Lab College of Control Science and Engineering Hangzhou310027 China Huzhou Institute of Zhejiang University Zhejiang 310027 China Alibaba DAMO Academy Autonomous Driving Lab Zhejiang 311121 China Huzhou University College of Information Engineering Zhejiang 313000 China
Autonomous vehicles trained through multiagent reinforcement learning (MARL) have shown impressive results in many driving scenarios. However, the performance of these trained policies can be impacted when faced with ... 详细信息
来源: 评论
FunGraph: Functionality Aware 3D Scene Graphs for Language-Prompted Scene Interaction
arXiv
收藏 引用
arXiv 2025年
作者: Rotondi, Dennis Scaparro, Fabio Blum, Hermann Arras, Kai O. Socially Intelligent Robotics Lab Institute for Artificial Intelligence University of Stuttgart Germany Robot Perception and Learning Lab LAMARR Institute for Machine Learning and Artificial Intelligence University of Bonn Germany
The concept of 3D scene graphs is increasingly recognized as a powerful semantic and hierarchical representation of the environment. Current approaches often address this at a coarse, object-level resolution. In contr... 详细信息
来源: 评论
TransVOS: Video object segmentation with transformers
arXiv
收藏 引用
arXiv 2021年
作者: Mei, Jianbiao Wang, Mengmeng Lin, Yeneng Yuan, Yi Liu, Yong Laboratory of Advanced Perception on Robotics and Intelligent Learning College of Control Science and Engineering Zhejiang University NetEase Fuxi AI Lab
Recently, Space-Time Memory Network (STM) based methods have achieved state-of-the-art performance in semi-supervised video object segmentation (VOS). A crucial problem in this task is how to model the dependency both... 详细信息
来源: 评论
learning to Model Diverse Driving Behaviors in Highly Interactive Autonomous Driving Scenarios with Multi-Agent Reinforcement learning
arXiv
收藏 引用
arXiv 2024年
作者: Weiwei, Liu Wenxuan, Hu Wei, Jing Lanxin, Lei Lingping, Gao Yong, Liu The Advanced Perception on Robotics and Intelligent Learning Lab College of Control Science and Enginneering Zhejiang University Hangzhou310027 China The Advanced Perception on Robotics and Intelligent Learning Lab Huzhou Institute Zhejiang University Huzhou China College of Information Engineering Huzhou University Huzhou China Department of Autonomous Driving Lab Alibaba DAMO Academy Hangzhou China
Autonomous vehicles trained through Multi-Agent Reinforcement learning (MARL) have shown impressive results in many driving scenarios. However, the performance of these trained policies can be impacted when faced with... 详细信息
来源: 评论
learning to Localize Cross-Anatomy Landmarks in X-Ray Images with a Universal Model
收藏 引用
Biomedical Engineering Frontiers 2022年 第1期3卷 298-308页
作者: Heqin Zhu Qingsong Yao Li Xiao S.Kevin Zhou Key Lab of Intelligent Information Processing of Chinese Academy of Sciences(CAS) Institute of Computing TechnologyCASBeijing 100190China Center for Medical Imaging RoboticsAnalytic Computing&Learning(MIRACLE)School of Biomedical Engineering&Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou 215123China
Objective and Impact *** this work,we develop a universal anatomical landmark detection model which learns once from multiple datasets corresponding to different anatomical *** with the conventional model trained on a... 详细信息
来源: 评论
Raising Body Ownership in End-to-End Visuomotor Policy learning via Robot-Centric Pooling
Raising Body Ownership in End-to-End Visuomotor Policy Learn...
收藏 引用
IEEE/RSJ International Conference on intelligent Robots and Systems (IROS)
作者: Zheyu Zhuang Ville Kyrki Danica Kragic Robotics Perception and Learning Lab EECS KTH Royal Institute of Technology Stockholm Sweden Department of Electrical Engineering and Automation (EEA) Intelligent Robotics Group Aalto University Espoo Finland
We present Robot-centric Pooling (RcP), a novel pooling method designed to enhance end-to-end visuomo-tor policies by enabling differentiation between the robots and similar entities or their surroundings. Given an im... 详细信息
来源: 评论
An efficient minimum vocabulary construction algorithm for language modeling  12
收藏 引用
25th International Conference on Industrial Engineering and Other Applications of Applied intelligent Systems, IEA/AIE 2012
作者: Lin, Sina Qin, Zengchang Huang, Zehua Wan, Tao Intelligent Computing and Machine Learning Lab. School of ASEE Beihang University Beijing China School of Advanced Engineering Beihang University China Robotics Institute Carnegie Mellon University Pittsburgh United States School of Medicine Boston University Boston United States
In learning a new word by a dictionary, we first need to know a set of "basic words" which are frequently appeared in word definitions. It often happens that you cannot understand the word you looked up beca... 详细信息
来源: 评论
Dexterous manipulation graphs
arXiv
收藏 引用
arXiv 2018年
作者: Cruciani, Silvia Smith, Christian Kragic, Danica Hang, Kaiyu Robotics Perception and Learning Lab EECS KTH Royal Institute of Technology Stockholm Sweden Robotics Institute Institute for Advanced Study Hong Kong University of Science and Technology Hong Kong
We propose the Dexterous Manipulation Graph as a tool to address in-hand manipulation and reposition an object inside a robot's end-effector. This graph is used to plan a sequence of manipulation primitives so to ... 详细信息
来源: 评论
Safe-To-Explore State Spaces: Ensuring Safe Exploration in Policy Search with Hierarchical Task Optimization
arXiv
收藏 引用
arXiv 2018年
作者: Lundell, Jens Krug, Robert Schaffernicht, Erik Stoyanov, Todor Kyrki, Ville Intelligent Robotics Group Department of Electrical Engineering and Automation Aalto University Finland AASS Research Center Örebro University Sweden Robotics Learning and Perception lab KTH Royal Institute of Technology Sweden
Policy search reinforcement learning allows robots to acquire skills by themselves. However, the learning procedure is inherently unsafe as the robot has no a-priori way to predict the consequences of the exploratory ... 详细信息
来源: 评论
learning Intra-group Cooperation in Multi-agent Systems
Learning Intra-group Cooperation in Multi-agent Systems
收藏 引用
International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
作者: Weiwei Liu Shanqi Liu Jian Yang Yong Liu The Advanced Perception on Robotics and Intelligent Learning Lab College of Control Science and Enginneering Zhejiang University Hangzhou China China Research and Development Academy of Machinery Equipment Beijing China Huzhou Institute of Zhejiang University Huzhou China
Reinforcement learning is one of the algorithms used in multi-agent systems to promote agent cooperation. However, most current multi-agent reinforcement learning algorithms improve the communication capabilities of a... 详细信息
来源: 评论