咨询与建议

限定检索结果

文献类型

  • 558 篇 期刊文献
  • 160 篇 会议

馆藏范围

  • 718 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 423 篇 工学
    • 215 篇 计算机科学与技术...
    • 180 篇 软件工程
    • 73 篇 生物医学工程(可授...
    • 68 篇 生物工程
    • 64 篇 电子科学与技术(可...
    • 63 篇 电气工程
    • 56 篇 光学工程
    • 49 篇 信息与通信工程
    • 49 篇 化学工程与技术
    • 41 篇 控制科学与工程
    • 34 篇 仪器科学与技术
    • 27 篇 材料科学与工程(可...
    • 20 篇 动力工程及工程热...
    • 19 篇 力学(可授工学、理...
    • 18 篇 冶金工程
  • 414 篇 理学
    • 151 篇 物理学
    • 146 篇 数学
    • 101 篇 生物学
    • 67 篇 地球物理学
    • 63 篇 统计学(可授理学、...
    • 56 篇 化学
    • 20 篇 系统科学
  • 93 篇 医学
    • 67 篇 临床医学
    • 60 篇 基础医学(可授医学...
    • 39 篇 公共卫生与预防医...
    • 31 篇 药学(可授医学、理...
  • 81 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 30 篇 图书情报与档案管...
    • 19 篇 工商管理
  • 26 篇 农学
  • 18 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
  • 4 篇 教育学
  • 1 篇 文学

主题

  • 22 篇 machine learning
  • 12 篇 deep learning
  • 8 篇 galaxies
  • 7 篇 stars
  • 7 篇 accuracy
  • 7 篇 training
  • 6 篇 covid-19
  • 6 篇 feature extracti...
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 supernovae
  • 5 篇 tensors
  • 5 篇 predictive model...
  • 5 篇 visualization
  • 5 篇 artificial intel...
  • 5 篇 molecular dynami...
  • 4 篇 planets
  • 4 篇 integral equatio...
  • 4 篇 photometry
  • 4 篇 x-ray generation...

机构

  • 34 篇 center for compu...
  • 31 篇 center for data ...
  • 21 篇 space telescope ...
  • 15 篇 nasa ames resear...
  • 10 篇 department of ph...
  • 9 篇 center for astro...
  • 8 篇 department of ea...
  • 8 篇 department of as...
  • 8 篇 institute for gr...
  • 8 篇 department of as...
  • 7 篇 kotizarovci obse...
  • 7 篇 university of gl...
  • 7 篇 millennium insti...
  • 7 篇 university of ch...
  • 7 篇 department of ph...
  • 7 篇 computational en...
  • 6 篇 university of ta...
  • 6 篇 royal stoke univ...
  • 6 篇 department of bi...
  • 6 篇 leiden observato...

作者

  • 14 篇 strader jay
  • 12 篇 rodriguez joseph...
  • 11 篇 sand david j.
  • 10 篇 jenkins jon m.
  • 10 篇 latham david w.
  • 10 篇 quinn samuel n.
  • 9 篇 shporer avi
  • 9 篇 winn joshua n.
  • 8 篇 ciardi david r.
  • 8 篇 howell steve b.
  • 7 篇 stassun keivan g...
  • 7 篇 masuda naoki
  • 7 篇 zhang linfeng
  • 7 篇 seager s.
  • 7 篇 vorobyev ilya
  • 7 篇 spekkens kristin...
  • 7 篇 bieryla allyson
  • 7 篇 hongo kenta
  • 7 篇 collins karen a.
  • 7 篇 crnojević denija

语言

  • 635 篇 英文
  • 73 篇 其他
  • 9 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 俄文
检索条件"机构=The Center for Computational and Data-Intensive Science and Engineering"
718 条 记 录,以下是301-310 订阅
排序:
Accurately predicting anticancer peptide using an ensemble of heterogeneously trained classifiers
收藏 引用
Informatics in Medicine Unlocked 2023年 42卷
作者: Azim, Sayed Mehedi Sabab, Noor Hossain Nuri Noshadi, Iman Alinejad-Rokny, Hamid Sharma, Alok Shatabda, Swakkhar Dehzangi, Iman Center for Computational and Integrative Biology Rutgers University Camden 08102 NJ United States Department of Computer Science and Engineering United International University Plot 2 United City Madani Avenue BaddaDhaka 1212 Bangladesh Department of Bioengineering University of California Riverside 92507 CA United States BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering The University of New South Wales (UNSW Sydney) Sydney NSW 2052 Australia UNSW Data Science Hub UNSW Sydney Sydney NSW 2052 Australia Health Data Analytics Program AI-enabled Processes Research Centre Macquarie University Sydney 2109 Australia Institute for Integrated and Intelligent Systems Griffith University Brisbane Australia Laboratory for Medical Science Mathematics RIKEN Center for Integrative Medical Sciences Yokohama 230-0045 Japan Department of Computer Science Rutgers University Camden 08102 NJ United States
The use of therapeutic peptides for the treatment of cancer has received tremendous attention in recent years. Anticancer peptides (ACPs) are considered new anticancer drugs which have several advantages over chemistr... 详细信息
来源: 评论
End-to-end AI Framework for Interpretable Prediction of Molecular and Crystal Properties
arXiv
收藏 引用
arXiv 2022年
作者: Park, Hyun Zhu, Ruijie Huerta, E.A. Chaudhuri, Santanu Tajkhorshid, Emad Cooper, Donny Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Department of Materials Science and Engineering Northwestern University EvanstonIL60208 United States Data Science and Learning Division Argonne National Laboratory LemontIL60439 United States Department of Computer Science The University of Chicago ChicagoIL60637 United States Department of Physics University of Illinois at Urbana-Champaign UrbanaIL61801 United States Multiscale Materials and Manufacturing Lab University of Illinois Chicago ChicagoIL60607 United States Department of Biochemistry University of Illinois at Urbana-Champaign UrbanaIL61801 United States Center for Biophysics and Quantitative Biology University of Illinois at Urbana-Champaign UrbanaIL61801 United States Computational Science and Engineering Data Science and AI Department TotalEnergies EP Research & Technology USA LLC HoustonTX77002 United States
We introduce an end-to-end computational framework that allows for hyperparameter optimization using the DeepHyper library, accelerated model training, and interpretable AI inference. The framework is based on state-o... 详细信息
来源: 评论
Image-guided patient-specific optimization of catheter placement for convection-enhanced nanoparticle delivery in recurrent glioblastoma
收藏 引用
Computers in Biology and Medicine 2024年 179卷 108889-108889页
作者: Wu, Chengyue Hormuth, David A. Christenson, Chase D. Woodall, Ryan T. Abdelmalik, Michael R.A. Phillips, William T. Hughes, Thomas J.R. Brenner, Andrew J. Yankeelov, Thomas E. Oden Institute for Computational Engineering and Sciences The University of Texas at Austin AustinTX78712 United States Department of Biomedical Engineering The University of Texas at Austin AustinTX78712 United States Department of Aerospace Engineering and Engineering Mechanics The University of Texas at Austin AustinTX78712 United States Department of Diagnostic Medicine The University of Texas at Austin AustinTX78712 United States Department of Oncology The University of Texas at Austin AustinTX78712 United States Livestrong Cancer Institutes The University of Texas at Austin AustinTX78712 United States Department of Imaging Physics The University of Texas MD Anderson Cancer Center HoustonTX77030 United States Department of Breast Imaging The University of Texas MD Anderson Cancer Center HoustonTX77030 United States Department of Biostatistics The University of Texas MD Anderson Cancer Center HoustonTX77030 United States Institute for Data Science in Oncology The University of Texas MD Anderson Cancer Center HoustonTX77030 United States Division of Mathematical Oncology Beckman Research Institute City of Hope National Medical Center 1500 East Duarte Rd DuarteCA91010 United States Department of Mechanical Engineering Eindhoven University of Technology Eindhoven Netherlands Department of Radiology UT Health San Antonio San AntonioTX78229 United States Mays Cancer Center UT Health San Antonio San AntonioTX78229 United States
Background: Proper catheter placement for convection-enhanced delivery (CED) is required to maximize tumor coverage and minimize exposure to healthy tissue. We developed an image-based model to patient-specifically op... 详细信息
来源: 评论
Tempered enthusiasm by interviewed experts for synthetic data and ELSI checklists for AI in medicine
收藏 引用
AI and ethics 2025年 第3期5卷 3241-3254页
作者: Laura Y Cabrera Jennifer Wagner Sara Gerke Daniel Susser Department of Engineering Science and Mechanics Pennsylvania State University W-316 Millennium Science Complex University Park PA 16802 USA. Department of Philosophy Pennsylvania State University University Park PA 16802 USA. Huck Institutes of the Life Sciences Pennsylvania State University University Park PA 16802 USA. Rock Ethics Institute Pennsylvania State University University Park PA 16802 USA. Bioethics Program Pennsylvania State University University Park PA 16802 USA. School of Engineering Design and Innovation Pennsylvania State University University Park PA 16802 USA. Department of Anthropology Pennsylvania State University University Park PA 16802 USA. Department of Biomedical Engineering Pennsylvania State University University Park PA 16802 USA. Institute for Computational and Data Sciences Pennsylvania State University University Park PA 16802 USA. College of Law and European Union Center University of Illinois Urbana-Champaign Champaign IL 61820 USA. Department of Information Science Cornell University Ithaca NY 14853 USA.
Synthetic data are increasingly being used in data-driven fields. While synthetic data is a promising tool in medicine, it raises new ethical, legal, and social implications (ELSI) challenges. There is a recognized ne... 详细信息
来源: 评论
The Artificial Intelligence Ontology: LLM-assisted construction of AI concept hierarchies
arXiv
收藏 引用
arXiv 2024年
作者: Joachimiak, Marcin P. Miller, Mark A. Caufield, J. Harry Ly, Ryan Harris, Nomi L. Tritt, Andrew Mungall, Christopher J. Bouchard, Kristofer E. Biosystems Data Science Department Environmental Genomics and Systems Biology Division Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States Scientific Data Division Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States Biological Systems & Engineering Division Lawrence Berkeley National Laboratory 1 Cyclotron Road BerkeleyCA94720 United States Helen Wills Neuroscience Institute UC Berkeley BerkeleyCA94720 United States Redwood Center for Theoretical Neuroscience UC Berkeley BerkeleyCA94720 United States
The Artificial Intelligence Ontology (AIO) is a systematization of artificial intelligence (AI) concepts, methodologies, and their interrelations. Developed via manual curation, with the additional assistance of large... 详细信息
来源: 评论
Active Brownian motion in two dimensions under stochastic resetting
收藏 引用
Physical Review E 2020年 第5期102卷 052129-052129页
作者: Vijay Kumar Onkar Sadekar Urna Basu Centre for Computational and Data-Intensive Science and Engineering Skolkovo Institute of Science and Technology Nobelya Ulitsa 3 Moscow 121205 Russia Indian Institute of Science Education and Research Homi Bhabha Road Pashan Pune 411008 India Raman Research Institute C. V. Raman Avenue Bengaluru 560080 India
We study the position distribution of an active Brownian particle (ABP) in the presence of stochastic resetting in two spatial dimensions. We consider three different resetting protocols: (1) where both position and o... 详细信息
来源: 评论
A Likelihood Approach to Nonparametric Estimation of a Singular Distribution Using Deep Generative Models
arXiv
收藏 引用
arXiv 2021年
作者: Chae, Minwoo Kim, Dongha Kim, Yongdai Lin, Lizhen Department of Industrial and Management Engineering Pohang University of Science and Technology Gyeongbuk Pohang37673 Korea Republic of School of Mathematics Statistics and Data Science Data Science Center Sungshin Women’s University Seoul02844 Korea Republic of Department of Statistics Seoul National University Seoul08826 Korea Republic of Department of Applied and Computational Mathematics and Statistics University of Notre Dame South BendIN46556 United States
We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dime... 详细信息
来源: 评论
Identifying Reasons for Contraceptive Switching from Real-World data Using Large Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Miao, Brenda Y. Williams, Christopher Y.K. Chinedu-Eneh, Ebenezer Zack, Travis Alsentzer, Emily Butte, Atul J. Chen, Irene Y. Bakar Computational Health Sciences Institute University of California San Francisco San FranciscoCA United States Department of Medicine University of California San Francisco San FranciscoCA United States Helen Diller Family Comprehensive Cancer Center University of California San Francisco San FranciscoCA United States Division of General Internal Medicine Brigham and Women's Hospital BostonMA United States Harvard Medical School BostonMA United States Center for Data-driven Insights and Innovation University of California Office of the President OaklandCA United States Computational Precision Health University of California Berkeley University of California San Francisco BerkeleyCA United States Electrical Engineering and Computer Science University of California Berkeley BerkeleyCA United States Berkeley AI Research University of California Berkeley BerkeleyCA United States
Background: Understanding why patients switch contraceptives is of significant interest but these factors are often only captured in unstructured clinical notes and can be difficult to extract. We evaluate the zero-sh... 详细信息
来源: 评论
Deep Learning for Automated Experimentation in Scanning Transmission Electron Microscopy
arXiv
收藏 引用
arXiv 2023年
作者: Kalinin, Sergei V. Mukherjee, Debangshu Roccapriore, Kevin Blaiszik, Ben Ghosh, Ayana Ziatdinov, Maxim Al-Najjar, A. Doty, Christina Akers, Sarah Rao, Nageswara S. Agar, Josh Spurgeon, Steven R. Department of Materials Science and Engineering University of Tennessee KnoxvilleTN37831 United States Computational Sciences & Engineering Division Oak Ridge National Laboratory Oak RidgeTN37831 United States Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak RidgeTN37831 United States Argonne National Laboratory Data Science and Learning Division ChicagoIL60439 United States University of Chicago Globus ChicagoIL60637 United States National Security Pacific Northwest National Laboratory RichlandWA99352 United States Department of Materials Science and Engineering Drexel University PhiladelphiaPA19104 United States Energy and Environment Pacific Northwest National Laboratory RichlandWA99352 United States Department of Physics University of Washington SeattleWA98195 United States
Machine learning (ML) has become critical for post-acquisition data analysis in (scanning) transmission electron microscopy, (S)TEM, imaging and spectroscopy. An emerging trend is the transition to real-time analysis ... 详细信息
来源: 评论
Closed-looped sensing and stimulation system for Parkinson's disease early diagnosis and rehabilitation
收藏 引用
Smart Health 2022年 26卷
作者: Cai, Yi Qian, Xiaoye Li, Qin Lin, Feng Huang, Ming-Chun Department of Electrical Computer and Systems Engineering Case Western Reserve University Cleveland OH United States Department of Data and Computational Science Duke Kunshan University Jiangsu 215316 China ZJU-Hangzhou Global Scientific and Technological Innovation Center School of Cyber Science and Technology Zhejiang University Zhejiang 310058 China Suzhou Huanmu Intelligence Technology Co. Ltd. Jiangsu China
Parkinson's disease (PD) patients are involved in motor dysfunctions and gait issues. The absence of long-term reliable gait rehabilitations could result in poor gait function, gait deficits, and locomotion proble... 详细信息
来源: 评论