咨询与建议

限定检索结果

文献类型

  • 2,674 篇 期刊文献
  • 1,345 篇 会议
  • 9 册 图书

馆藏范围

  • 4,028 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,545 篇 工学
    • 1,757 篇 计算机科学与技术...
    • 1,427 篇 软件工程
    • 502 篇 信息与通信工程
    • 438 篇 生物工程
    • 371 篇 生物医学工程(可授...
    • 357 篇 电气工程
    • 312 篇 控制科学与工程
    • 293 篇 光学工程
    • 254 篇 电子科学与技术(可...
    • 166 篇 化学工程与技术
    • 123 篇 机械工程
    • 86 篇 仪器科学与技术
    • 83 篇 动力工程及工程热...
    • 65 篇 材料科学与工程(可...
    • 64 篇 核科学与技术
    • 64 篇 网络空间安全
  • 1,794 篇 理学
    • 731 篇 物理学
    • 682 篇 数学
    • 545 篇 生物学
    • 290 篇 统计学(可授理学、...
    • 211 篇 化学
    • 115 篇 系统科学
  • 624 篇 管理学
    • 332 篇 管理科学与工程(可...
    • 284 篇 图书情报与档案管...
    • 146 篇 工商管理
  • 357 篇 医学
    • 299 篇 临床医学
    • 248 篇 基础医学(可授医学...
    • 156 篇 药学(可授医学、理...
    • 121 篇 公共卫生与预防医...
  • 95 篇 法学
    • 78 篇 社会学
  • 54 篇 农学
  • 44 篇 经济学
  • 41 篇 教育学
  • 12 篇 文学
  • 9 篇 艺术学
  • 6 篇 军事学

主题

  • 108 篇 deep learning
  • 89 篇 machine learning
  • 82 篇 feature extracti...
  • 81 篇 semantics
  • 80 篇 training
  • 74 篇 hadrons
  • 59 篇 accuracy
  • 57 篇 computational mo...
  • 52 篇 data models
  • 50 篇 hadron colliders
  • 45 篇 image segmentati...
  • 45 篇 hadronic decays
  • 41 篇 optimization
  • 40 篇 magnetic resonan...
  • 39 篇 predictive model...
  • 38 篇 bottom mesons
  • 35 篇 graph neural net...
  • 34 篇 contrastive lear...
  • 34 篇 branching fracti...
  • 33 篇 reinforcement le...

机构

  • 426 篇 department of ph...
  • 413 篇 horia hulubei na...
  • 404 篇 van swinderen in...
  • 398 篇 iccub universita...
  • 397 篇 h.h. wills physi...
  • 387 篇 school of physic...
  • 383 篇 cavendish labora...
  • 378 篇 university of ch...
  • 376 篇 yandex school of...
  • 351 篇 department of ph...
  • 341 篇 imperial college...
  • 332 篇 stfc rutherford ...
  • 330 篇 center for high ...
  • 325 篇 institute of par...
  • 304 篇 henryk niewodnic...
  • 299 篇 nikhef national ...
  • 289 篇 school of physic...
  • 289 篇 physik-institut ...
  • 289 篇 oliver lodge lab...
  • 287 篇 physikalisches i...

作者

  • 251 篇 barter w.
  • 247 篇 bellee v.
  • 241 篇 beiter a.
  • 224 篇 casse g.
  • 217 篇 bowcock t.j.v.
  • 216 篇 blake t.
  • 216 篇 borsato m.
  • 216 篇 betancourt c.
  • 216 篇 bediaga i.
  • 215 篇 amato s.
  • 210 篇 baryshnikov f.
  • 210 篇 boettcher t.
  • 209 篇 brundu d.
  • 207 篇 braun s.
  • 203 篇 borisyak m.
  • 195 篇 bizzeti a.
  • 182 篇 bencivenni g.
  • 175 篇 back j.j.
  • 173 篇 bjørn m.
  • 171 篇 bay a.

语言

  • 3,620 篇 英文
  • 378 篇 其他
  • 34 篇 中文
  • 3 篇 德文
  • 1 篇 法文
检索条件"机构=The Center for Data Center and AI and School of Engineering and Computer Science"
4028 条 记 录,以下是651-660 订阅
排序:
Transformer for Object Re-Identification: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Ye, Mang Chen, Shuoyi Li, Chenyue Zheng, Wei-Shi Crandall, David Du, Bo National Engineering Research Center for Multimedia Software School of Computer Science Hubei Luojia Laboratory Wuhan University Wuhan China School of Data and Computer Science Sun Yat-sen University Guangzhou China Luddy School of Informatics Computing and Engineering Indiana University United States
Object Re-identification (Re-ID) aims to identify specific objects across different times and scenes, which is a widely researched task in computer vision. For a prolonged period, this field has been predominantly dri... 详细信息
来源: 评论
Weak Random Feature Method for Solving Partial Differential Equations
arXiv
收藏 引用
arXiv 2025年
作者: Kuvakin, Mikhail Mei, Zijian Chen, Jingrun Moscow Institute of Physics and Technology Russia School of Artificial Intelligence and Data Science Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou China School of Mathematical Sciences Suzhou Institute for Advanced Research University of Science and Technology of China Suzhou Big Data & AI Research and Engineering Center Suzhou China
The random feature method (RFM) has demonstrated great potential in bridging traditional numerical methods and machine learning techniques for solving partial differential equations (PDEs). It retains the advantages o... 详细信息
来源: 评论
Fitness Landscape Optimization Makes Stochastic Symbolic Search By Genetic Programming Easier
收藏 引用
IEEE Transactions on Evolutionary Computation 2024年
作者: Huang, Zhixing Mei, Yi Zhang, Fangfang Zhang, Mengjie Banzhaf, Wolfgang Victoria University of Wellington Centre for Data Science and Artificial Intelligence School of Engineering and Computer Science Wellington6140 New Zealand Michigan State University BEACON Center for the Study of Evolution in Action and Ecology Evolution and Behavior Program Department of Computer Science and Engineering East LansingMI48864 United States
Searching for symbolic models plays an important role in a wide range of domains such as neural architecture search and automatic program synthesis. Genetic programming is a promising stochastic method for searching e... 详细信息
来源: 评论
Modeling viral evolution:A novel SIRSVIDE framework with application to SARS-CoV-2 dynamics
收藏 引用
hLife 2024年 第5期2卷 227-245页
作者: Kaichun Jin Xiaolu Tang Zhaohui Qian Zhiqiang Wu Zifeng Yang Tao Qian Chitin Hon Jian Lu State Key Laboratory of Protein and Plant Gene Research Center for BioinformaticsSchool of Life SciencesPeking UniversityBeijingChina NHC Key Laboratory of Systems Biology of Pathogens Institute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangdongChina Respiratory Disease AI Laboratory on Epidemic and Medical Big Data Instrument Applications Department of Engineering ScienceFaculty of Innovation EngineeringMacao University of Science and TechnologyMacaoChina Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases KingMed School of Laboratory MedicineGuangzhou Medical UniversityGuangdongChina Macao Center for Mathematical Sciences Macao University of Science and TechnologyMacaoChina Department of Engineering Science Faculty of Innovation EngineeringMacao University of Science and TechnologyMacaoChina
Understanding evolutionary trends in emerging viruses,such as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),is crucial for effective public health management and ***,extensive debates have arisen concern... 详细信息
来源: 评论
CLDG: Contrastive Learning on Dynamic Graphs  39
CLDG: Contrastive Learning on Dynamic Graphs
收藏 引用
39th IEEE International Conference on data engineering, ICDE 2023
作者: Xu, Yiming Shi, Bin Ma, Teng Dong, Bo Zhou, Haoyi Zheng, Qinghua Xi'an Jiaotong University Department of Computer Science and Technology China Xi'an Jiaotong University Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering China Xi'an Jiaotong University Department of Distance Education China Beihang University School of Software China Beihang University Advanced Innovation Center for Big Data and Brain Computing China
The graph with complex annotations is the most potent data type, whose constantly evolving motivates further exploration of the unsupervised dynamic graph representation. One of the representative paradigms is graph c... 详细信息
来源: 评论
A Multi-Modal Behavior Quantitative Analysis Model for Autism Early Screening
A Multi-Modal Behavior Quantitative Analysis Model for Autis...
收藏 引用
2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
作者: Lei, Jiayi Zhang, E. She, Yingying Wang, Xin Liao, Yuhan Hu, Bin Wu, Hang Yang, Minqiang Tian, Jiajia Wang, Yong School of Informatics Xiamen University China University of Kansas Medical Center Department of Occupational Therapy Education United States School of Film National Institute for Data Science in Health and Medicine Xiamen University China School of Computer Science and Technology Beijing Institute of Technology China Together Education Institute China School of Information Science and Engineering Lanzhou University China Fujian Medical University Union Hospital Pediatric Department China
Human-computer Interaction (HCI) and Machine Learning (ML) technologies have potential for the behavioral screening of autistic children but how to design a tool and analyse behavior reliably is challenging. Based on ...
来源: 评论
Tackling data Sparsity and Combinatorial Challenges in Rare Disease Matching with Medical Informed Machine Learning
Tackling Data Sparsity and Combinatorial Challenges in Rare ...
收藏 引用
2024 IEEE International Conference on Big data, Bigdata 2024
作者: Berger, Armin Lagones, Tom Anglim Grigull, Lorenz Fendrich, Lara Bell, Thiago Högl, Henriette Ernst, Gundula Schmidt, Ralf Bascom, David Sifa, Rafet Lübbering, Max Fraunhofer Iais Department of Media Engineering Germany University of Bonn Department of Computer Science Germany West-AI - Federal Ministry of Education and Research Germany Department of Health Queensland Australia Griffith University School of Medicine Australia University Hospital Bonn Center for Rare Diseases Germany Children's Network for Chronic Illnesses and Disabilities Germany Medical School Hannover Department of Medical Psychology Germany
With over 7,000 known rare diseases and a prevalence of less than one in a thousand, rare diseases pose substantial challenges to advanced medical support networks. This study investigates the efficacy of ***, a novel... 详细信息
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale ai  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
SELF-CLUSTERING GRAPH TRANSFORMER APPROACH TO MODEL RESTING STATE FUNCTIONAL BRaiN ACTIVITY
arXiv
收藏 引用
arXiv 2025年
作者: Thapaliya, Bishal Akbas, Esra Sapkota, Ram Ray, Bhaskar Calhoun, Vince Liu, Jingyu Department of Computer Science Georgia State University Atlanta United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science United States School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta United States
Resting-state functional magnetic resonance imaging (rs-fMRI) offers valuable insights into the human brain’s functional organization and is a powerful tool for investigating the relationship between brain function a... 详细信息
来源: 评论
DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series
收藏 引用
IEEE Transactions on Knowledge and data engineering 2025年
作者: Darban, Zahra Zamanzadeh Yang, Yiyuan Webb, Geoffrey I. Aggarwal, Charu C. Wen, Qingsong Pan, Shirui Salehi, Mahsa Monash University Department of Data Science and AI Melbourne Australia University of Oxford Department of Computer Science OxfordOX1 3SA United Kingdom Monash University Department of Data Science and AI Australia IBM T. J. Watson Research Center Yorktown Heights United States Squirrel Ai Learning Bellevue United States Griffith University School of ICT Australia
In time series anomaly detection (TSAD), the scarcity of labeled data poses a challenge to the development of accurate models. Unsupervised domain adaptation (UDA) offers a solution by leveraging labeled data from a r... 详细信息
来源: 评论