咨询与建议

限定检索结果

文献类型

  • 2,625 篇 期刊文献
  • 1,344 篇 会议
  • 9 册 图书

馆藏范围

  • 3,978 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,521 篇 工学
    • 1,713 篇 计算机科学与技术...
    • 1,408 篇 软件工程
    • 493 篇 信息与通信工程
    • 435 篇 生物工程
    • 370 篇 生物医学工程(可授...
    • 342 篇 电气工程
    • 294 篇 光学工程
    • 289 篇 控制科学与工程
    • 246 篇 电子科学与技术(可...
    • 161 篇 化学工程与技术
    • 119 篇 机械工程
    • 86 篇 仪器科学与技术
    • 85 篇 核科学与技术
    • 80 篇 动力工程及工程热...
    • 71 篇 材料科学与工程(可...
    • 63 篇 网络空间安全
  • 1,775 篇 理学
    • 726 篇 物理学
    • 683 篇 数学
    • 539 篇 生物学
    • 297 篇 统计学(可授理学、...
    • 207 篇 化学
    • 113 篇 系统科学
  • 619 篇 管理学
    • 328 篇 管理科学与工程(可...
    • 284 篇 图书情报与档案管...
    • 142 篇 工商管理
  • 337 篇 医学
    • 286 篇 临床医学
    • 238 篇 基础医学(可授医学...
    • 157 篇 药学(可授医学、理...
    • 121 篇 公共卫生与预防医...
  • 96 篇 法学
    • 79 篇 社会学
  • 56 篇 农学
  • 43 篇 经济学
  • 41 篇 教育学
  • 10 篇 文学
  • 8 篇 艺术学
  • 6 篇 军事学

主题

  • 105 篇 deep learning
  • 89 篇 machine learning
  • 82 篇 feature extracti...
  • 80 篇 semantics
  • 78 篇 training
  • 74 篇 hadrons
  • 59 篇 accuracy
  • 57 篇 computational mo...
  • 52 篇 data models
  • 49 篇 hadron colliders
  • 46 篇 hadronic decays
  • 42 篇 image segmentati...
  • 39 篇 magnetic resonan...
  • 39 篇 optimization
  • 38 篇 bottom mesons
  • 38 篇 predictive model...
  • 36 篇 federated learni...
  • 34 篇 branching fracti...
  • 33 篇 data mining
  • 32 篇 task analysis

机构

  • 426 篇 department of ph...
  • 413 篇 horia hulubei na...
  • 407 篇 van swinderen in...
  • 400 篇 iccub universita...
  • 398 篇 h.h. wills physi...
  • 389 篇 school of physic...
  • 388 篇 cavendish labora...
  • 381 篇 university of ch...
  • 379 篇 yandex school of...
  • 354 篇 department of ph...
  • 347 篇 imperial college...
  • 342 篇 stfc rutherford ...
  • 337 篇 center for high ...
  • 334 篇 institute of par...
  • 308 篇 henryk niewodnic...
  • 298 篇 nikhef national ...
  • 289 篇 physik-institut ...
  • 289 篇 oliver lodge lab...
  • 288 篇 school of physic...
  • 285 篇 physikalisches i...

作者

  • 251 篇 barter w.
  • 247 篇 bellee v.
  • 241 篇 beiter a.
  • 224 篇 casse g.
  • 220 篇 bowcock t.j.v.
  • 218 篇 blake t.
  • 217 篇 borsato m.
  • 217 篇 bediaga i.
  • 216 篇 betancourt c.
  • 216 篇 amato s.
  • 213 篇 boettcher t.
  • 211 篇 baryshnikov f.
  • 209 篇 brundu d.
  • 209 篇 braun s.
  • 208 篇 borisyak m.
  • 201 篇 bizzeti a.
  • 187 篇 bencivenni g.
  • 178 篇 back j.j.
  • 174 篇 bjørn m.
  • 174 篇 bay a.

语言

  • 3,287 篇 英文
  • 666 篇 其他
  • 29 篇 中文
  • 3 篇 德文
  • 1 篇 法文
检索条件"机构=The Center for Data Center and AI and School of Engineering and Computer Science"
3978 条 记 录,以下是881-890 订阅
排序:
LEMMA: Learning Language-Conditioned Multi-Robot Manipulation
arXiv
收藏 引用
arXiv 2023年
作者: Gong, Ran Gao, Xiaofeng Gao, Qiaozi Shakiah, Suhaila Thattai, Govind Sukhatme, Gaurav S. Center for Vision Cognition Learning and Autonomy UCLA United States Amazon Alexa AI United States Department of Computer Science USC Viterbi School of Engineering United States
Complex manipulation tasks often require robots with complementary capabilities to collaborate. We introduce a benchmark for LanguagE-Conditioned Multi-robot MAnipulation (LEMMA) focused on task allocation and long-ho... 详细信息
来源: 评论
CMD: A Cache-assisted GPU Memory Deduplication Architecture
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Wei Feng, Dan Tong, Wei Wei, Xueliang Wu, Bing The Wuhan National Laboratory for Optoelectronics Key Laboratory of Information Storage System Engineering Research Center of Data Storage Systems and Technology Ministry of Education of China School of Computer Science and Technology Huazhong University of Science and Technology China
Massive off-chip accesses in GPUs are the main performance bottleneck, and we divided these accesses into three types: (1) Write, (2) data-Read, and (3) Read-Only. Besides, We find that many writes are duplicate, and ... 详细信息
来源: 评论
Generating Targeted Universal Adversarial Perturbation against Automatic Speech Recognition via Phoneme Tailoring
Generating Targeted Universal Adversarial Perturbation again...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Yujun Zhang Yanqu Chen Jiakai Wang Jin Hu Renshuai Tao Xianglong Liu State Key Laboratory of Complex & Critical Software Environment Beihang University China School of Computer Science and Engineering Beihang University China College of Computer Science Beijing University of Technology China Zhongguancun Laboratory China School of Computer and Information Technology Beijing Jiaotong University China Institute of Data Space Hefei Comprehensive National Science Center China
There is a growing concern about adversarial attacks against automatic speech recognition (ASR) systems. Although research into targeted universal adversarial examples (AEs) has progressed, current methods are constra... 详细信息
来源: 评论
SP3: Enhancing Structured Pruning via PCA Projection
arXiv
收藏 引用
arXiv 2023年
作者: Hu, Yuxuan Zhang, Jing Zhao, Zhe Zhao, Chen Chen, Xiaodong Li, Cuiping Chen, Hong School of Information Renmin University of China Beijing China Key Laboratory of Data Engineering and Knowledge Engineering MOE China Engineering Research Center of Database and Business Intelligence MOE China Tencent AI Lab Tencent Beijing China School of Computer Science and Technology Xi'an Jiaotong University Xi'An China
Structured pruning is a widely used technique for reducing the size of pre-trained language models (PLMs), but current methods often overlook the potential of compressing the hidden dimension (d) in PLMs, a dimension ...
来源: 评论
Multi-Representation Genetic Programming: A Case Study on Tree-based and Linear Representations
arXiv
收藏 引用
arXiv 2024年
作者: Huang, Zhixing Mei, Yi Zhang, Fangfang Zhang, Mengjie Banzhaf, Wolfgang Centre for Data Science and Artificial Intelligence School of Engineering and Computer Science Victoria University of Wellington Wellington6140 New Zealand Department of Computer Science and Engineering BEACON Center for the Study of Evolution in Action and Ecology Evolution and Behavior Program Michigan State University East LansingMI48864 United States
Existing genetic programming (GP) methods are typically designed based on a certain representation, such as tree-based or linear representations. These representations show various pros and cons in different domains. ... 详细信息
来源: 评论
EABC: Energy-aware Centrality-based Caching for Named data Networking in the IoT
EABC: Energy-aware Centrality-based Caching for Named Data N...
收藏 引用
IEEE International Symposium on World of Wireless Mobile and Multimedia Networks (WoWMoM)
作者: Xingyun He Hu Liu Wuyungerile Li Alvin Valera Winston K.G. Seah Inner Mongolia Key Lab. of Wireless Networking & Mobile Computing Engineering Research Center of Ecological Big Data Ministry of Education School of Computer Science Inner Mongolia University Hohhot China Wireless Networks Research Group School of Engineering and Computer Science Victoria University of Wellington Wellington New Zealand
Named data Networking (NDN) is an information-centric internet architecture that delivers packets based on the name of the content in the packet. A key component of NDN is the caching strategy designed to reduce total... 详细信息
来源: 评论
Genetic Auto-prompt Learning for Pre-trained Code Intelligence Language Models
arXiv
收藏 引用
arXiv 2024年
作者: Feng, Chengzhe Sun, Yanan Li, Ke Zhou, Pan Lv, Jiancheng Lu, Aojun The College of Computer Science Sichuan University Chengdu610065 China The Department of Computer Science University of Exeter ExeterEX4 4QF United Kingdom The Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan430074 China
As Pre-trained Language Models (PLMs), a popular approach for code intelligence, continue to grow in size, the computational cost of their usage has become prohibitively expensive. Prompt learning, a recent developmen... 详细信息
来源: 评论
SpreadFGL: Edge-Client Collaborative Federated Graph Learning with Adaptive Neighbor Generation
SpreadFGL: Edge-Client Collaborative Federated Graph Learnin...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE computer and Communications Societies
作者: Luying Zhong Yueyang Pi Zheyi Chen Zhengxin Yu Wang Miao Xing Chen Geyong Min College of Computer and Data Science Fuzhou University China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University China Engineering Research Center of Big Data Intelligence Ministry of Education China School of Computing and Communications University of Lancaster UK School of Engineering Computing and Mathematics University of Plymouth UK Department of Computer Science University of Exeter UK
Federated Graph Learning (FGL) has garnered widespread attention by enabling collaborative training on multiple clients for semi-supervised classification tasks. However, most existing FGL studies do not well consider... 详细信息
来源: 评论
An Auto-Parallel Method for Deep Learning Models Based on Genetic Algorithm  29
An Auto-Parallel Method for Deep Learning Models Based on Ge...
收藏 引用
29th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2023
作者: Zeng, Yan Huang, Chengchuang Ni, Yijie Zhou, Chunbao Zhang, Jilin Wang, Jue Zhou, Mingyao Xue, Meiting Zhang, Yunquan Hangzhou Dianzi University School of Computer Science and Technology Hangzhou310018 China Ministry of Education Key Laboratory for Modeling and Simulation of Complex Systems Hangzhou310018 China Data Security Governance Zhejiang Engineering Research Center Hangzhou310018 China Hangzhou Dianzi University School of ITMO Joint Institute Hangzhou310018 China Institute of Computer Network Information Center of the Chinese Academy of Sciences Beijing100086 China HuaWei China Institute of Computing Technology of the Chinese Academy of Sciences State Key Laboratory of Computer Architecture Beijing100086 China
As the size of datasets and neural network models increases, automatic parallelization methods for models have become a research hotspot in recent years. The existing auto-parallel methods based on machine learning or... 详细信息
来源: 评论
Global Context Aggregation Network for Lightweight Saliency Detection of Surface Defects
arXiv
收藏 引用
arXiv 2023年
作者: Yan, Feng Jiang, Xiaoheng Lu, Yang Cui, Lisha Li, Shupan Cao, Jiale Xu, Mingliang Tao, Dacheng School of Computer Science and Artificial Intelligence Zhengzhou University Zhengzhou China Engineering Research Center of Intelligent Swarm Systems Ministry of Education Zhengzhou China National Supercomputing Center in Zhengzhou Zhengzhou China School of Electrical and Information Engineering Tianjin University Tianjin China the Sydney AI Centre the School of Computer Science Faculty of Engineering The University of Sydney DarlingtonNSW2008 Australia
Surface defect inspection is a very challenging task in which surface defects usually show weak appearances or exist under complex backgrounds. Most high-accuracy defect detection methods require expensive computation... 详细信息
来源: 评论