咨询与建议

限定检索结果

文献类型

  • 105 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 207 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 141 篇 工学
    • 106 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 37 篇 信息与通信工程
    • 34 篇 光学工程
    • 27 篇 生物工程
    • 19 篇 机械工程
    • 15 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 92 篇 理学
    • 42 篇 物理学
    • 34 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 39 篇 管理学
    • 24 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 semantics
  • 6 篇 machine vision
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 12 篇 xiamen key labor...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 8 篇 department of co...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 fujian key labor...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 22 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 195 篇 英文
  • 10 篇 其他
  • 2 篇 中文
检索条件"机构=The Computer Vision and Pattern Recognition Laboratory"
207 条 记 录,以下是91-100 订阅
排序:
Learning to Predict Context-Adaptive Convolution for Semantic Segmentation  16th
Learning to Predict Context-Adaptive Convolution for Semanti...
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Qiao, Yu Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Hong Kong
Long-range contextual information is essential for achieving high-performance semantic segmentation. Previous feature re-weighting methods demonstrate that using global context for re-weighting feature channels can ef... 详细信息
来源: 评论
Dual-AI: Dual-path Actor Interaction Learning for Group Activity recognition
arXiv
收藏 引用
arXiv 2022年
作者: Han, Mingfei Zhang, David Junhao Wang, Yali Yan, Rui Yao, Lina Chang, Xiaojun Qiao, Yu ReLER AAII UTS United States National University of Singapore Singapore ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China RMIT University Australia University of New South Wales Australia Shanghai AI Laboratory Shanghai China
Learning spatial-temporal relation among multiple actors is crucial for group activity recognition. Different group activities often show the diversified interactions between actors in the video. Hence, it is often di... 详细信息
来源: 评论
Revisiting the Generalization Problem of Low-level vision Models Through the Lens of Image Deraining
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Jinfan You, Zhiyuan Gu, Jinjin Zhu, Kaiwen Xue, Tianfan Dong, Chao Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China The Chinese University of Hong Kong 999077 Hong Kong The University of Sydney NSW2006 Australia Shanghai Jiao Tong University Shanghai200240 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shenzhen University of Advanced Technology Shenzhen518055 China
Generalization remains a significant challenge for low-level vision models, which often struggle with unseen degradations in real-world scenarios despite their success in controlled benchmarks. In this paper, we revis... 详细信息
来源: 评论
Abstract: Learning to avoid poor images: towards task-aware c-arm cone-beam ct trajectories
Abstract: Learning to avoid poor images: towards task-aware ...
收藏 引用
International workshop on Algorithmen - Systeme - Anwendungen, 2020
作者: Zaech, Jan-Nico Gao, Cong Bier, Bastian Taylor, Russell Maier, Andreas Navab, Nassir Unberath, Mathias Laboratory for Computational Sensing and Robotics Johns Hopkins University Baltimore United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich Zürich Germany
Metal artifacts in computed tomography (CT) arise from a mismatch between physics of image formation and idealized assumptions during tomographic reconstruction. These artifacts are particularly strong around metal im... 详细信息
来源: 评论
Machine Learning and computer vision Techniques in Continuous Beehive Monitoring Applications: A Survey
arXiv
收藏 引用
arXiv 2022年
作者: Bilik, Simon Zemcik, Tomas Kratochvila, Lukas Ricanek, Dominik Richter, Miloslav Zambanini, Sebastian Horak, Karel Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Computer Vision Lab Institute of Visual Computing & Human-Centered Technology Faculty of Informatics TU Wien Favoritenstr. 9/193-1 ViennaA-1040 Austria
Wide use and availability of machine learning and computer vision techniques allows development of relatively complex monitoring systems in many domains. Besides the traditional industrial domain, new applications app... 详细信息
来源: 评论
EfficientFCN: Holistically-Guided Decoding for Semantic Segmentation  1
收藏 引用
16th European Conference on computer vision, ECCV 2020
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory The Chinese University of Hong Kong Shatin Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Beijing China SenseTime Research Beijing China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
VideoPipe 2022 Challenge: Real-World Video Understanding for Urban Pipe Inspection
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Yi Zhang, Xuan Li, Ying Liang, Guixin Jiang, Yabing Qiu, Lixia Tang, Haiping Xie, Fei Yao, Wei Dai, Yi Qiao, Yu Wang, Yali ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences China Shenzhen Bwell Technology Co. Ltd China Shenzhen Longhua Drainage Co. Ltd China Shanghai AI Laboratory Shanghai China SIAT Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Video understanding is an important problem in computer vision. Currently, the well-studied task in this research is human action recognition, where the clips are manually trimmed from the long videos, and a single cl... 详细信息
来源: 评论
HIVE-Net: Centerline-Aware HIerarchical View-Ensemble Convolutional Network for Mitochondria Segmentation in EM Images
arXiv
收藏 引用
arXiv 2021年
作者: Yuan, Zhimin Ma, Xiaofen Yi, Jiajin Luo, Zhengrong Peng, Jialin College of Computer Science and Technology Huaqiao University Xiamen361021 China Department of Medical Imaging Guangdong Second Provincial General Hospital Guangzhou510317 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen361021 China
Background and objective: With the advancement of electron microscopy (EM) imaging technology, neuroscientists can investigate the function of various intracellular organelles, e.g, mitochondria, at nano-scale. Semant... 详细信息
来源: 评论
UniFormer: Unifying Convolution and Self-attention for Visual recognition
arXiv
收藏 引用
arXiv 2022年
作者: Li, Kunchang Wang, Yali Zhang, Junhao Gao, Peng Song, Guanglu Liu, Yu Li, Hongsheng Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen518055 China University of Chinese Academy of Sciences Beijing100049 China Shanghai Artificial Intelligence Laboratory Shanghai200232 China National University of Singapore Singapore Shanghai Artificial Intelligence Laboratory China SenseTime Research China The Chinese University of Hong Kong Hong Kong
It is a challenging task to learn discriminative representation from images and videos, due to large local redundancy and complex global dependency in these visual data. Convolution neural networks (CNNs) and vision t... 详细信息
来源: 评论
Periodic Action Temporal Localization Method Based on Two-Path Architecture for Product Counting in Sewing Video  15th
Periodic Action Temporal Localization Method Based on Two-Pa...
收藏 引用
15th International Conference on Intelligent Computing, ICIC 2019
作者: Huang, Jin-Long Zhang, Hong-Bo Du, Ji-Xiang Zheng, Jian-Feng Peng, Xiao-Xiao Department of Computer Science and Technology Huaqiao University Xiamen China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen China
Automatically product counting in the handmade process plays a vital role in the manufacturing industry, especially at the sewing industry. Nevertheless, there is currently a few methods to count the product number in... 详细信息
来源: 评论