咨询与建议

限定检索结果

文献类型

  • 109 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 211 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 14 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 10 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 200 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=The Computer Vision and Pattern Recognition Laboratory"
211 条 记 录,以下是91-100 订阅
排序:
Multiple objects segmentation based on maximum-likelihood estimation and optimum entropy-distribution (MLE-OED)
Multiple objects segmentation based on maximum-likelihood es...
收藏 引用
International Conference on pattern recognition
作者: Xie Jun H.T. Tsui Xia Deshen Image Processing and Computer Vision Laboratory Department of Electronic Engineering Chinese University of Hong Kong Hong Kong China Pattern Recognition Laboratory Department of Computer Science Nanjing University of Science and Technology China
A new method based on MLE-OED is proposed for unsupervised image segmentation of multiple objects which have fuzzy edges. It adjusts the parameters of a mixture of Gaussian distributions via minimizing a new loss func... 详细信息
来源: 评论
Deep convolution neural networks cascaded improved boosted forest for pedestrian detection
收藏 引用
Journal of computers (Taiwan) 2018年 第5期29卷 15-28页
作者: Xu, Zhi-Tong Luo, Yan-Min Liu, Pei-Zhong Du, Yong-Zhao College of Computer Science and Technology Huaqiao University Xiamen361021 China Key Laboratory for Computer Vision and Pattern Recognition of Xiamen City Huaqiao University Xiamen361021 China College of Engineering Huaqiao University Quanzhou362000 China
Due to the resolution of small size pedestrian is relatively low, and the hard negative background is very similar to people, therefore, detecting small size pedestrian or detecting pedestrian from hard negative backg... 详细信息
来源: 评论
Finding discriminative filters for specific degradations in blind super-resolution  21
Finding discriminative filters for specific degradations in ...
收藏 引用
Proceedings of the 35th International Conference on Neural Information Processing Systems
作者: Liangbin Xie Xintao Wang Chao Dong Zhongang Qi Ying Shan Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and University of Chinese Academy of Sciences and ARC Lab Tencent PCG ARC Lab Tencent PCG Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences and Shanghai AI Laboratory Shanghai China
Recent blind super-resolution (SR) methods typically consist of two branches, one for degradation prediction and the other for conditional restoration. However, our experiments show that a one-branch network can achie...
来源: 评论
Special Issue on Face Presentation Attack Detection
IEEE Transactions on Biometrics, Behavior, and Identity Scie...
收藏 引用
IEEE Transactions on Biometrics, Behavior, and Identity Science 2021年 第3期3卷 282-284页
作者: Wan, Jun Escalera, Sergio Escalante, Hugo Jair Guo, Guodong Li, Stan Z. National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing100190 China Computer Vision Center Universitat de Barcelona Barcelona08007 Spain Instituto Nacional de Astrofísica Óptica y Electrónica Puebla72840 Mexico Institute of Deep Learning Baidu Research Beijing100193 China Center for Ai Research and Innovation Westlake University Hangzhou310024 China
Face presentation attack detection, also termed Face Anti-Spoofing (FAS) [item 1), 2) in the Appendix), is a hot and challenging research topic that has received much attention from the computer vision and pattern rec... 详细信息
来源: 评论
Matching individual Ladoga ringed seals across short-term image sequences (vol 102, pg 957, 2022)
收藏 引用
MAMMALIAN BIOLOGY 2022年 第3期102卷 1045-1045页
作者: Nepovinnykh, E. Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering School of Engineering Science Lappeenranta-Lahti University of Technology LUT P.O.Box 20 53851 Lappeenranta Finland Department of Artificial Intelligence Institute of Computer Science and Technology Peter the Great St. Petersburg Polytechnic University Polytechnicheskaya 29 Saint Petersburg Russian Federation 195251 Department of Computer Science and Computational Experiment Southern Federal University Rostov-on-Don Russian Federation 344006 Interregional Charitable Public Organization “Biologists for Nature Conservation” (BFNC) 24 line 3-7 Saint Petersburg Russian Federation 199106
Automated wildlife reidentification has attracted increasing attention in recent years as it provides a non-invasive tool to identify and to track individual wild animals over time. In this paper, the first steps are ... 详细信息
来源: 评论
Enhancing Micro Gesture recognition for Emotion Understanding via Context-aware Visual-Text Contrastive Learning
arXiv
收藏 引用
arXiv 2024年
作者: Li, Deng Xing, Bohao Liu, Xin School of Electrical and Information Engineering Tianjin University Tianjin300072 China Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland
Psychological studies have shown that Micro Gestures (MG) are closely linked to human emotions. MG-based emotion understanding has attracted much attention because it allows for emotion understanding through nonverbal... 详细信息
来源: 评论
Unsupervised HDR Image and Video Tone Mapping via Contrastive Learning
arXiv
收藏 引用
arXiv 2023年
作者: Cao, Cong Yue, Huanjing Liu, Xin Yang, Jingyu School of Electrical and Information Engineering Tianjin University China Computer Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland
Capturing high dynamic range (HDR) images (videos) is attractive because it can reveal the details in both dark and bright regions. Since the mainstream screens only support low dynamic range (LDR) content, tone mappi... 详细信息
来源: 评论
Digging into Uncertainty in Self-supervised Multi-view Stereo
Digging into Uncertainty in Self-supervised Multi-view Stere...
收藏 引用
International Conference on computer vision (ICCV)
作者: Hongbin Xu Zhipeng Zhou Yali Wang Wenxiong Kang Baigui Sun Hao Li Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Alibaba Group Pazhou Laboratory Shanghai AI Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论
Towards accurate scene text recognition with semantic reasoning networks
arXiv
收藏 引用
arXiv 2020年
作者: Yu, Deli Li, Xuan Zhang, Chengquan Liu, Tao Han, Junyu Liu, Jingtuo Ding, Errui School of Artificial Intelligence University of Chinese Academy of Sciences Department of Computer Vision Technology Baidu Inc National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Scene text image contains two levels of contents: visual texture and semantic information. Although the previous scene text recognition methods have made great progress over the past few years, the research on mining ... 详细信息
来源: 评论
Digging into uncertainty in self-supervised multi-view stereo
arXiv
收藏 引用
arXiv 2021年
作者: Xu, Hongbin Zhou, Zhipeng Wang, Yali Kang, Wenxiong Sun, Baigui Li, Hao Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences South China University of Technology Shanghai AI Laboratory Alibaba Group Pazhou Laboratory
Self-supervised Multi-view stereo (MVS) with a pretext task of image reconstruction has achieved significant progress recently. However, previous methods are built upon intuitions, lacking comprehensive explanations a... 详细信息
来源: 评论