咨询与建议

限定检索结果

文献类型

  • 105 篇 期刊文献
  • 98 篇 会议
  • 1 册 图书

馆藏范围

  • 204 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 141 篇 工学
    • 106 篇 计算机科学与技术...
    • 98 篇 软件工程
    • 37 篇 信息与通信工程
    • 34 篇 光学工程
    • 27 篇 生物工程
    • 19 篇 机械工程
    • 15 篇 控制科学与工程
    • 15 篇 生物医学工程(可授...
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 92 篇 理学
    • 42 篇 物理学
    • 34 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 39 篇 管理学
    • 24 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 11 篇 convolution
  • 10 篇 pattern recognit...
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 8 篇 training
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 semantics
  • 6 篇 machine vision
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 12 篇 xiamen key labor...
  • 11 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 shenzhen key lab...
  • 8 篇 department of co...
  • 7 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 fujian key labor...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 22 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 192 篇 英文
  • 10 篇 其他
  • 2 篇 中文
检索条件"机构=The Computer Vision and Pattern Recognition Laboratory"
204 条 记 录,以下是101-110 订阅
A New Journey from SDRTV to HDRTV
A New Journey from SDRTV to HDRTV
收藏 引用
International Conference on computer vision (ICCV)
作者: Xiangyu Chen Zhengwen Zhang Jimmy S. Ren Lynhoo Tian Yu Qiao Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institute of Advanced Technology Chinese Academy of Sciences SenseTime Research Qing Yuan Research Institute Shanghai Jiao Tong University Shanghai AI Laboratory Shanghai
Nowadays modern displays are capable to render video content with high dynamic range (HDR) and wide color gamut (WCG). However, most available resources are still in standard dynamic range (SDR). Therefore, there is a... 详细信息
来源: 评论
FDDH: Fast discriminative discrete hashing for large-scale cross-modal retrieval
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Xin Wang, Xingzhi Cheung, Yiu-Ming Department of Computer Science Huaqiao University Xiamen Key Laboratory of Computer Vision and Pattern Recognition Fujian Key Laboratory of Big Data Intelligence and Security Xiamen361021 China School of Electronics and Information Technology Sun Yat-sen University Guangzhou510006 China Department of Computer Science Hong Kong Baptist University Hong Kong Hong Kong
Cross-modal hashing, favored for its effectiveness and efficiency, has received wide attention to facilitating efficient retrieval across different modalities. Nevertheless, most existing methods do not sufficiently e... 详细信息
来源: 评论
Reflash Dropout in Image Super-Resolution
arXiv
收藏 引用
arXiv 2021年
作者: Kong, Xiangtao Liu, Xina Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab. Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China The University of Sydney Australia Shanghai AI Laboratory Shanghai China
Dropout is designed to relieve the overfitting problem in high-level vision tasks but is rarely applied in low-level vision tasks, like image super-resolution (SR). As a classic regression problem, SR exhibits a diffe... 详细信息
来源: 评论
PPT Fusion: Pyramid Patch Transformer for a Case Study in Image Fusion
arXiv
收藏 引用
arXiv 2021年
作者: Fu, Yu Xu, Tianyang Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
The Transformer architecture has witnessed a rapid development in recent years, outperforming the CNN architectures in many computer vision tasks, as exemplified by the vision Transformers (ViT) for image classificati... 详细信息
来源: 评论
RFN-Nest: An end-to-end residual fusion network for infrared and visible images
arXiv
收藏 引用
arXiv 2021年
作者: Li, Hui Wu, Xiao-Jun Kittler, Josef Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China The Center for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
In the image fusion field, the design of deep learning-based fusion methods is far from routine. It is invariably fusion-task specific and requires a careful consideration. The most difficult part of the design is to ... 详细信息
来源: 评论
EDEN: Deep feature distribution pooling for Saimaa ringed seals pattern matching
arXiv
收藏 引用
arXiv 2021年
作者: Chelak, Ilia Nepovinnykh, Ekaterina Eerola, Tuomas Kälviäinen, Heikki Belykh, Igor Peter the Great St. Petersburg Polytechnic University Saint Petersburg Russia Lappeenranta-Lahti University of Technology LUT School of Engineering Science Department of Computational Engineering Computer Vision and Pattern Recognition Laboratory P.O.Box 20 Lappeenranta53850 Finland
In this paper, pelage pattern matching is considered to solve the individual re-identification of the Saimaa ringed seals. Animal re-identification together with the access to large amount of image material through ca... 详细信息
来源: 评论
MorphMLP: An Efficient MLP-Like Backbone for Spatial-Temporal Representation Learning
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, David Junhao Li, Kunchang Wang, Yali Chen, Yunpeng Chandra, Shashwat Qiao, Yu Liu, Luoqi Shou, Mike Zheng National University of Singapore Singapore Meitu Inc China ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Chinese Academy of Sciences China Shanghai AI Laboratory China
Recently, MLP-Like networks have been revived for image recognition. However, whether it is possible to build a generic MLP-Like architecture on video domain has not been explored, due to complex spatial-temporal mode... 详细信息
来源: 评论
Regional attention with architecture-rebuilt 3D network for RGB-D gesture recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhou, Benjia Li, Yunan Wan, Jun Macau University of Science and Technology China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China School of Computer Science and Technology Xidian Univeristy China Xi'an Key Laboratory of Big Data and Intelligent Vision China School of Artificial Intelligence University of Chinese Academy of Sciences Beijing China
Human gesture recognition has drawn much attention in the area of computer vision. However, the performance of gesture recognition is always influenced by some gesture-irrelevant factors like the background and the cl... 详细信息
来源: 评论
UMFA: A photorealistic style transfer method based on U-Net and multi-layer feature aggregation
arXiv
收藏 引用
arXiv 2021年
作者: Rao, Dongyu Wu, Xiao-Jun Li, Hui Kittler, Josef Xu, Tianyang Jiangnan University Jiangsu Provincial Engineerinig Laboratory of Pattern Recognition and Computational Intelligence School of Artificial Intelligence and Computer Science Lihu Avenue Wuxi214122 China University of Surrey Centre for Vision Speech and Signal Processing GuildfordGU2 7XH United Kingdom
In this paper, we propose a photorealistic style transfer network to emphasize the natural effect of photo realistic image stylization. In general, distortion of the image content and lacking of details are two typica... 详细信息
来源: 评论
Towards Phytoplankton Parasite Detection Using Autoencoders
arXiv
收藏 引用
arXiv 2023年
作者: Bilik, Simon Batrakhanov, Daniel Eerola, Tuomas Haraguchi, Lumi Kraft, Kaisa Van den Wyngaert, Silke Kangas, Jonna Sjöqvist, Conny Madsen, Karin Lensu, Lasse Kälviäinen, Heikki Horak, Karel Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Yliopistonkatu 34 Lappeenranta53850 Finland Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Technická 3058/10 Brno61600 Czech Republic Marine Ecology Measurements Finnish Environment Institute Agnes Sjöbergin Katu 2 Helsinki00790 Finland Department of Biology University of Turku Vesilinnantie 5 Turku20014 Finland Environmental and Marine Biology Åbo Akademi University Henrikinkatu 2 Turku20014 Finland
Phytoplankton parasites are largely understudied microbial components with a potentially significant ecological impact on phytoplankton bloom dynamics. To better understand their impact, we need improved detection met... 详细信息
来源: 评论