咨询与建议

限定检索结果

文献类型

  • 109 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 211 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 14 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 10 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 200 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=The Computer Vision and Pattern Recognition Laboratory"
211 条 记 录,以下是111-120 订阅
排序:
Learning dynamical human-joint affinity for 3D pose estimation in videos
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Junhao Wang, Yali Zhou, Zhipeng Luan, Tianyu Wang, Zhe Qiao, Yu ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of California Irvine United States Shanghai AI Laboratory Shanghai China
Graph Convolution Network (GCN) has been successfully used for 3D human pose estimation in videos. However, it is often built on the fixed human-joint affinity, according to human skeleton. This may reduce adaptation ... 详细信息
来源: 评论
DegAE: A New Pretraining Paradigm for Low-Level vision
DegAE: A New Pretraining Paradigm for Low-Level Vision
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Yihao Liu Jingwen He Jinjin Gu Xiangtao Kong Yu Qiao Chao Dong Shanghai Artificial Intelligence Laboratory ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences University of Chinese Academy of Sciences The University of Sydney
Self-supervised pretraining has achieved remarkable success in high-level vision, but its application in low-level vision remains ambiguous and not well-established. What is the primitive intention of pretraining? Wha...
来源: 评论
Iterative data adaptive anisotropic image filtering
Iterative data adaptive anisotropic image filtering
收藏 引用
2012 International Conference on Machine Learning and Cybernetics, ICMLC 2012
作者: Yang, Chang-Cai Zheng, Xin-Yi Tian, Jin-Wen Shang, Ke Tian, Xin Hao, Wei Institute for Pattern Recognition and Artificial Intelligence Science and Technology on Multi-Spectral Information Processing Laboratory Huazhong University of Science and Technology Wuhan 430074 China Electrical Engineering and Renewable Energy School China Three Gorges University Yichang 443002 China Institute of Intelligent Vision and Image Information College of Computer and Information Technology China Three Gorges University Yichang 443002 China
This paper presents a novel data-adaptive anisotropic filtering technique built on top of an iterative scheme. This new technique can preserve the original significant structures while suppressing noises to the larges... 详细信息
来源: 评论
Automated scoring of Bender Gestalt Test using image analysis techniques
Automated scoring of Bender Gestalt Test using image analysi...
收藏 引用
International Conference on Document Analysis and recognition
作者: Momina Moetesum Imran Siddiqi Uzma Masroor Chawki Djeddi Center of Computer Vision and Pattern Recognition Bahria University Islamabad Pakistan Dept. of Professional Psychology Bahria University Islamabad Pakistan LAMIS Laboratory Larbi Tebessi University Tebessa Algeria
Drawing tests have been long used by practitioners and researchers for early detection of psychological and neurological impairments. These tests allow subjects to naturally express themselves as opposed to an intervi... 详细信息
来源: 评论
Compressed sensing ensemble classifier for human detection
Compressed sensing ensemble classifier for human detection
收藏 引用
4th International Conference on Intelligence Science and Big Data Engineering, IScIDE 2013
作者: Zhang, Baochang Liu, Juan Gao, Yongsheng Liu, Jianzhuang Science and Technology on Aircraft Control Laboratory School of Automation Science and Electrical Engineering BeiHang University Beijing 100191 China School of Engineering Griffith University Australia Shenzhen Key Lab for Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Department of Information Engineering Chinese University of Hong Kong Hong Kong Hong Kong
This paper proposes a novel Compressed Sensing Ensemble Classifier (CSEC) for human detection. The proposed CSEC employs the compressed sensing technique to get a more sparse model with a more reasonable selection of ... 详细信息
来源: 评论
ICDAR2019 robust reading challenge on multi-lingual scene text detection and recognition-RRC-MLT-2019  15
ICDAR2019 robust reading challenge on multi-lingual scene te...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Nayef, Nibal Liu, Cheng-Lin Ogier, Jean-Marc Patel, Yash Busta, Michal Chowdhury, Pinaki Nath Karatzas, Dimosthenis Khlif, Wafa Matas, Jiri Pal, Umapada Burie, Jean-Christophe L3i Laboratory University of la Rochelle France Computer Vision Center Universitat Autonoma de Barcelona Spain CVPR Unit Indian Statistical Institute India Robotics Institute Carnegie Mellon Universiry Pittsburgh United States Center for Machine Perception Department of Cybernetics Czech Technical University Prague Czech Republic National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
ChaLearn Looking at People RGB-D Isolated and Continuous Datasets for Gesture recognition
ChaLearn Looking at People RGB-D Isolated and Continuous Dat...
收藏 引用
IEEE computer Society Conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Jun Wan Stan Z. Li Yibing Zhao Shuai Zhou Isabelle Guyon Sergio Escalera National Laboratory of Pattern Recognition Chinese Academy of Sciences China Macau University of Science and Technology Macau UPSud and INRIA Université Paris-Saclay ChaLearn University of Barcelona Computer Vision Center ChaLearn
In this paper, we present two large video multi-modal datasets for RGB and RGB-D gesture recognition: the ChaLearn LAP RGB-D Isolated Gesture Dataset (IsoGD) and the Continuous Gesture Dataset (ConGD). Both datasets a... 详细信息
来源: 评论
ICDAR 2013 Handwriting Segmentation Contest
ICDAR 2013 Handwriting Segmentation Contest
收藏 引用
International Conference on Document Analysis and recognition
作者: Nikolaos Stamatopoulos Basilis Gatos Georgios Louloudis Umapada Pal Alireza Alaei Computational Intelligence Laboratory Institute of Informatics and Telecommunications National Center for Scientific Research Demokritos Athens Greece Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata India Computer Science Laboratory Universite Francois Rabelais Tours France
This paper presents the results of the Handwriting Segmentation Contest that was organized in the context of the ICDAR2013. The general objective of the contest was to use well established evaluation practices and pro... 详细信息
来源: 评论
Efficient Window Block Retrieval in Quadtree-Based Spatial Databases
收藏 引用
GeoInformatica 1997年 第1期1.0卷 59-91页
作者: Aref, Walid G. Samet, Hanan Computer Science Department Center for Automation Research University of Maryland College Park MD 20742 United States University of Alexandria Egypt University of Maryland College Park United States Matsushita Info. Technol. Laboratory Princeton United States IBM Research Almaden CA United States University of Maryland Inst. for Advanced Computer Studies College Park MD United States ACM IEEE United States Department of Computer Science University of Maryland United States Computer Vision Laboratory Stanford University United States ACM IEEE Intl. Assoc. of Pattern Recognition
An algorithm is presented to answer window queries in a quadtree-based spatial database environment by retrieving all of the quadtree blocks in the underlying spatial database that cover the quadtree blocks that compr... 详细信息
来源: 评论
Analyzing dividend events with neural network rule extraction
Analyzing dividend events with neural network rule extractio...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: M. Dong Xu-Shen Zhou Machine Vision and Pattern Recognition Laboratory Department of Computer Science Wayne State University Detroit MI USA Department of Finance and Legal Studies College of Business Bloomsburg University Bloomsburg PA USA
Over the last two decades, artificial neural networks (ANN) have been applied to solve a variety of problems such as pattern classification and function approximation. In many applications, it is desirable to extract ... 详细信息
来源: 评论