咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 13 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 199 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=The Computer Vision and Pattern Recognition Laboratory"
210 条 记 录,以下是121-130 订阅
排序:
Generate Like Experts: Multi-Stage Font Generation by Incorporating Font Transfer Process into Diffusion Models
Generate Like Experts: Multi-Stage Font Generation by Incorp...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Bin Fu Fanghua Yu Anran Liu Zixuan Wang Jie Wen Junjun He Yu Qiao ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences The University of Hong Kong Harbin Institute of Technology Shenzhen Shanghai Artificial Intelligence Laboratory
Few-shot font generation (FFG) produces stylized font images with a limited number of reference samples, which can significantly reduce labor costs in manual font designs. Most existing FFG methods follow the style-co... 详细信息
来源: 评论
Survey of Automatic Plankton Image recognition: Challenges, Existing Solutions and Future Perspectives
arXiv
收藏 引用
arXiv 2023年
作者: Eerola, Tuomas Batrakhanov, Daniel Barazandeh, Nastaran Vatankhah Kraft, Kaisa Haraguchi, Lumi Lensu, Lasse Suikkanen, Sanna Seppälä, Jukka Tamminen, Timo Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory LUT University Yliopistonkatu 34 Lappeenranta53850 Finland Marine Ecology Measurements Finnish Environment Institute Agnes Sjöbergin Katu 2 Helsinki00790 Finland
Planktonic organisms are key components of aquatic ecosystems and respond quickly to changes in the environment, therefore their monitoring is vital to follow and understand the changes in the environment. Yet, monito... 详细信息
来源: 评论
Artist-Aware Image Style Transfer Via Text Guided Contrastive Learning
SSRN
收藏 引用
SSRN 2023年
作者: Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Kalogeiton, Vicky Computer Vision and Pattern Recognition Laboratory LUT University Finland Caritas Institute of Higher Education Hong Kong The Hong Kong Polytechnic University Hong Kong LIX Ecole Polytechnique IP Paris France
Image style transfer has attracted widespread attention in the past few years. Despite its remarkable results, it requires additional style images available as references, making it less flexible and inconvenient. Usi... 详细信息
来源: 评论
A Probabilistic Framework for Multitarget Tracking with Mutual Occlusions
A Probabilistic Framework for Multitarget Tracking with Mutu...
收藏 引用
IEEE Conference on computer vision and pattern recognition
作者: Menglong Yang Yiguang Liu Longyin Wen Zhisheng You Stan Z. Li Key Laboratory of Fundamental Synthetic Vision Graphics and Image for National Defense School of Aeronautics and Astronautics & Computer Science Sichuan University Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences
Mutual occlusions among targets can cause track loss or target position deviation, because the observation likelihood of an occluded target may vanish even when we have the estimated location of the target. This paper... 详细信息
来源: 评论
A learning-based method for online adjustment of C-arm cone-beam CT source trajectories for artifact avoidance
arXiv
收藏 引用
arXiv 2020年
作者: Thies, Mareike Zäch, Jan-Nico Gao, Cong Taylor, Russell Navab, Nassir Maier, Andreas Unberath, Mathias Laboratory for Computational Sensing + Robotics Johns Hopkins University BaltimoreMD United States Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Computer Vision Laboratory Eidgenössische Technische Hochschule Zürich
Purpose: During spinal fusion surgery, screws are placed close to critical nerves suggesting the need for highly accurate screw placement. Verifying screw placement on high-quality tomographic imaging is essential. C-... 详细信息
来源: 评论
Combining feature aggregation and geometric similarity for re-identification of patterned animals
arXiv
收藏 引用
arXiv 2023年
作者: Immonen, Veikka Nepovinnykh, Ekaterina Eerola, Tuomas Stewart, Charles V. Kälviäinen, Heikki Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering School of Engineering Sciences Lappeenranta-Lahti University of Technology LUT LappeenrantaFI-53851 Finland Department of Computer Science Rensselaer Polytechnic Institute TroyNY12180 United States
Image-based re-identification of animal individuals allows gathering of information such as migration patterns of the animals over time. This, together with large image volumes collected using camera traps and crowdso... 详细信息
来源: 评论
Design of surrogate models in civil engineering by neural networks
Design of surrogate models in civil engineering by neural ne...
收藏 引用
South Eastern European Design Automation, computer Engineering, computer Networks and Social Media Conference (SEEDA-CECNSM)
作者: Vojtěch Drahý Radek Mařík Heikki Kälviäinen Department of Computer Science Czech Technical University in Prague Prague Czech Republic Department of Telecommunication Engineering Czech Technical University in Prague Prague Czech Republic Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland
We present a task from the critical infrastructure field in materials engineering. We created a surrogate model for the bridge construction object to determine the material parameters’ values. The work aims to use ne... 详细信息
来源: 评论
Activating More Pixels in Image Super-Resolution Transformer
Activating More Pixels in Image Super-Resolution Transformer
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Xiangyu Chen Xintao Wang Jiantao Zhou Yu Qiao Chao Dong State Key Laboratory of Internet of Things for Smart City University of Macau Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shanghai Artificial Intelligence Laboratory ARC Lab Tencent PCG
Transformer-based methods have shown impressive performance in low-level vision tasks, such as image super-resolution. However, we find that these networks can only utilize a limited spatial range of input information...
来源: 评论
EfficientFCN: Holistically-guided decoding for semantic segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Jianbo He, Junjun Zhang, Jiawei Ren, Jimmy S. Li, Hongsheng CUHK-SenseTime Joint Laboratory Chinese University of Hong Kong Hong Kong Shenzhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China SenseTime Research China
Both performance and efficiency are important to semantic segmentation. State-of-the-art semantic segmentation algorithms are mostly based on dilated Fully Convolutional Networks (dilatedFCN), which adopt dilated conv... 详细信息
来源: 评论
OSRT: Omnidirectional Image Super-Resolution with Distortion-aware Transformer
OSRT: Omnidirectional Image Super-Resolution with Distortion...
收藏 引用
Conference on computer vision and pattern recognition (CVPR)
作者: Fanghua Yu Xintao Wang Mingdeng Cao Gen Li Ying Shan Chao Dong ShenZhen Key Lab of Computer Vision and Pattern Recognition Shenzhen Institute of Advanced Technology Chinese Academy of Sciences ARC Tencent PCG The University of Tokyo Platform Technologies Tencent Online Video Shanghai Artificial Intelligence Laboratory
Omnidirectional images (ODIs) have obtained lots of research interest for immersive experiences. Although ODIs require extremely high resolution to capture details of the entire scene, the resolutions of most ODIs are...
来源: 评论