咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 13 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 199 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=The Computer Vision and Pattern Recognition Laboratory"
210 条 记 录,以下是131-140 订阅
排序:
computer vision Approaches for Automated Bee Counting Application
arXiv
收藏 引用
arXiv 2024年
作者: Bilik, Simon Janakova, Ilona Ligocki, Adam Ficek, Dominik Horak, Karel Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland
Many application from the bee colony health state monitoring could be efficiently solved using a computer vision techniques. One of such challenges is an efficient way for counting the number of incoming and outcoming... 详细信息
来源: 评论
HIVE-Net: Centerline-Aware HIerarchical View-Ensemble Convolutional Network for Mitochondria Segmentation in EM Images
arXiv
收藏 引用
arXiv 2021年
作者: Yuan, Zhimin Ma, Xiaofen Yi, Jiajin Luo, Zhengrong Peng, Jialin College of Computer Science and Technology Huaqiao University Xiamen361021 China Department of Medical Imaging Guangdong Second Provincial General Hospital Guangzhou510317 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen361021 China
Background and objective: With the advancement of electron microscopy (EM) imaging technology, neuroscientists can investigate the function of various intracellular organelles, e.g, mitochondria, at nano-scale. Semant... 详细信息
来源: 评论
A Riemannian Residual Learning Mechanism for SPD Network
A Riemannian Residual Learning Mechanism for SPD Network
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhenyu Cai Rui Wang Tianyang Xu Xiaojun Wu Josef Kittler School of Artificial Intelligence and Computer Science Jiangnan University Wuxi China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Wuxi China Centre for Vision Speech and Signal Processing University of Surrey Guildford U.K.
The generalization of Euclidean network paradigm to the Riemannian manifolds has attracted much attention for offering useful geometric representations in processing manifold-valued data in recent years. However, the ... 详细信息
来源: 评论
From recognition to Prediction: Leveraging Sequence Reasoning for Action Anticipation
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Xin Hao, Chao Yu, Zitong Yue, Huanjing Yang, Jingyu School of Electrical and Information Engineering Tianjin University China Computer Vision and Pattern Recognition Laboratory School of Engineering Sciences Lappeenranta-Lahti University of Technology LUT Finland School of Computing and Information Technology Great Bay University China
The action anticipation task refers to predicting what action will happen based on observed videos, which requires the model to have a strong ability to summarize the present and then reason about the future. Experien... 详细信息
来源: 评论
Answering Diverse Questions via Text Attached with Key Audio-Visual Clues
arXiv
收藏 引用
arXiv 2024年
作者: Ye, Qilang Yu, Zitong Liu, Xin The School of Computing and Information Technology Great Bay University Dongguan523000 China The School of Computer Science and Engineering Chongqing University of Technology Chongqing401300 China The Computer Vision and Pattern Recognition Laboratory Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland
Audio-visual question answering (AVQA) requires reference to video content and auditory information, followed by correlating the question to predict the most precise answer. Although mining deeper layers of audio-visu... 详细信息
来源: 评论
Efficient Image Super-Resolution using Vast-Receptive-Field Attention
arXiv
收藏 引用
arXiv 2022年
作者: Zhou, Lin Cai, Haoming Gu, Jinjin Li, Zheyuan Liu, Yingqi Chen, Xiangyu Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China Shanghai AI Laboratory Shanghai China The University of Sydney Australia University of Macau China
The attention mechanism plays a pivotal role in designing advanced super-resolution (SR) networks. In this work, we design an efficient SR network by improving the attention mechanism. We start from a simple pixel att... 详细信息
来源: 评论
Blueprint Separable Residual Network for Efficient Image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Zheyuan Liu, Yingqi Chen, Xiangyu Cai, Haoming Gu, Jinjin Qiao, Yu Dong, Chao ShenZhen Key Lab of Computer Vision and Pattern Recognition SIAT-SenseTime Joint Lab Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences China University of Macau China Shanghai AI Laboratory Shanghai China The University of Sydney Australia
Recent advances in single image super-resolution (SISR) have achieved extraordinary performance, but the computational cost is too heavy to apply in edge devices. To alleviate this problem, many novel and effective so... 详细信息
来源: 评论
Pose focus transformer meet inter-part relation
收藏 引用
Expert Systems with Applications 2024年 240卷
作者: Luo, Yanmin Lin, Hongwei Huang, Wenlin Wang, Youjie Du, Jixiang Guo, Jing-Ming College of Computer Science and Technology Huaqiao University Xiamen361021 China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University Xiamen361021 China Maynooth International Engineering College Fuzhou University Fuzhou350108 China Department of Electrical Engineering National Taiwan University of Science and Technology Taipei10607 China
Human pose estimation in crowded scenes is a challenging task. Due to overlap and occlusion, it is difficult to infer pose clues from individual keypoints. We proposed PFFormer, a new transformer-based approach that t... 详细信息
来源: 评论
Co-clustering Documents and Words Using Bipartite Isoperimetric Graph Partitioning
Co-clustering Documents and Words Using Bipartite Isoperimet...
收藏 引用
IEEE International Conference on Data Mining (ICDM)
作者: Manjeet Rege Ming Dong Farshad Fotouhi Machine Vision and Pattern Recognition Laboratory Database and Multimedia Systems GroupDepartment of Computer Science Wayne State University Detroit MI USA Database and Multimedia Systems Group Database and Multimedia Systems GroupDepartment of Computer Science Wayne State University Detroit MI USA
In this paper, we present a novel graph theoretic approach to the problem of document-word co-clustering. In our approach, documents and words are modeled as the two vertices of a bipartite graph. We then propose isop... 详细信息
来源: 评论
DAPlankton: Benchmark Dataset For Multi-Instrument Plankton recognition Via Fine-Grained Domain Adaptation
DAPlankton: Benchmark Dataset For Multi-Instrument Plankton ...
收藏 引用
IEEE International Conference on Image Processing
作者: Daniel Batrakhanov Tuomas Eerola Kaisa Kraft Lumi Haraguchi Lasse Lensu Sanna Suikkanen María Teresa Camarena-Gómez Jukka Seppälä Heikki Kälviäinen Computer Vision and Pattern Recognition Laboratory LUT University Finland Research Infrastructure Finnish Environment Institute Finland Marine and Freshwater Solutions Finnish Environment Institute Finland Centro Oceanografico de Malaga Instituto Español de Oceanografia Spain
Plankton recognition provides novel possibilities to study various environmental aspects and an interesting real-world context to develop domain adaptation (DA) methods. Different imaging instruments cause domain shif... 详细信息
来源: 评论