咨询与建议

限定检索结果

文献类型

  • 108 篇 期刊文献
  • 98 篇 会议
  • 4 册 图书

馆藏范围

  • 210 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 145 篇 工学
    • 109 篇 计算机科学与技术...
    • 100 篇 软件工程
    • 38 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 生物工程
    • 19 篇 机械工程
    • 16 篇 生物医学工程(可授...
    • 15 篇 控制科学与工程
    • 9 篇 电气工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 5 篇 土木工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
  • 94 篇 理学
    • 43 篇 物理学
    • 35 篇 生物学
    • 25 篇 数学
    • 9 篇 统计学(可授理学、...
    • 8 篇 化学
    • 5 篇 海洋科学
    • 3 篇 系统科学
  • 40 篇 管理学
    • 25 篇 图书情报与档案管...
    • 19 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 7 篇 医学
    • 7 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 5 篇 法学
    • 5 篇 社会学
  • 2 篇 经济学
  • 1 篇 农学
  • 1 篇 艺术学

主题

  • 14 篇 computer vision
  • 12 篇 pattern recognit...
  • 11 篇 convolution
  • 8 篇 face recognition
  • 8 篇 feature extracti...
  • 7 篇 image segmentati...
  • 7 篇 databases
  • 7 篇 training
  • 6 篇 machine vision
  • 6 篇 semantics
  • 5 篇 distillation
  • 5 篇 hidden markov mo...
  • 5 篇 laboratories
  • 5 篇 visualization
  • 5 篇 clustering algor...
  • 4 篇 computer science
  • 4 篇 object detection
  • 4 篇 pattern matching
  • 4 篇 large dataset
  • 4 篇 neural networks

机构

  • 19 篇 shanghai ai labo...
  • 17 篇 shenzhen key lab...
  • 15 篇 university of ch...
  • 13 篇 xiamen key labor...
  • 12 篇 sensetime resear...
  • 11 篇 shanghai artific...
  • 9 篇 department of co...
  • 9 篇 shenzhen key lab...
  • 8 篇 national laborat...
  • 7 篇 department of in...
  • 6 篇 shenzhen key lab...
  • 6 篇 the university o...
  • 6 篇 fujian key labor...
  • 6 篇 shenzhen key lab...
  • 6 篇 university of ma...
  • 6 篇 school of electr...
  • 5 篇 school of artifi...
  • 5 篇 shenzhen key lab...
  • 5 篇 school of artifi...
  • 5 篇 college of compu...

作者

  • 23 篇 qiao yu
  • 19 篇 liu xin
  • 13 篇 wang yali
  • 13 篇 kälviäinen heikk...
  • 12 篇 eerola tuomas
  • 10 篇 dong chao
  • 9 篇 chen xiangyu
  • 8 篇 lensu lasse
  • 8 篇 yu qiao
  • 8 篇 wu xiao-jun
  • 8 篇 kittler josef
  • 7 篇 ming dong
  • 7 篇 yu zitong
  • 7 篇 yue huanjing
  • 7 篇 yang jingyu
  • 6 篇 umapada pal
  • 6 篇 he junjun
  • 6 篇 li hongsheng
  • 6 篇 chao dong
  • 5 篇 kraft kaisa

语言

  • 199 篇 英文
  • 10 篇 其他
  • 1 篇 中文
检索条件"机构=The Computer Vision and Pattern Recognition Laboratory"
210 条 记 录,以下是191-200 订阅
排序:
Affine Non-negative Collaborative Representation Based pattern Classification
arXiv
收藏 引用
arXiv 2020年
作者: Yin, He-Feng Wu, Xiao-Jun Feng, Zhen-Hua Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Department of Computer Science University of Surrey GuildfordGU2 7XH United Kingdom Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
—During the past decade, representation-based classification methods have received considerable attention in pattern recognition. In particular, the recently proposed non-negative representation based classification ... 详细信息
来源: 评论
ICDAR2019 Robust reading challenge on multi-lingual scene text detection and recognition – RRC-MLT-2019
arXiv
收藏 引用
arXiv 2019年
作者: Nayef, Nibal Patel, Yash Busta, Michal Chowdhury, Pinaki Nath Karatzas, Dimosthenis Khlif, Wafa Matas, Jiri Pal, Umapada Burie, Jean-Christophe Liu, Cheng-lin Ogier, Jean-Marc L3i Laboratory University of La Rochelle France Computer Vision Center Universitat Autònoma de Barcelona Spain CVPR unit Indian Statistical Institute India Robotics Institute Carnegie Mellon Universiry Pittsburgh United States Center for Machine Perception Department of Cybernetics Czech Technical University Prague Czech Republic National Laboratory of Pattern Recognition Institute of Automation of Chinese Academy of Sciences China
With the growing cosmopolitan culture of modern cities, the need of robust Multi-Lingual scene Text (MLT) detection and recognition systems has never been more immense. With the goal to systematically benchmark and pu... 详细信息
来源: 评论
Road Segmentation via Iterative Deep Analysis
Road Segmentation via Iterative Deep Analysis
收藏 引用
IEEE International Conference on Robotics and Biomimetics
作者: Xiang Chen Yu Qiao Student at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Address: 1068 Xueyuan Avenue Shenzhen University Town Shenzhen P.R.China Researcher at Shenzhen Key Laboratory of Computer Vision and Pattern Recognition Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Address: 1068 Xueyuan Avenue Shenzhen University Town Shenzhen P.R.China
Nowadays, people are increasingly concerned about the safety of traffic systems. Road segmentation and recognition is a fundamental problem in perceiving traffic environments and serve as the basis for self-driving ca... 详细信息
来源: 评论
Multi-scale Promoted Self-adjusting Correlation Learning for Facial Action Unit Detection
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Xin Yuan, Kaishen Niu, Xuesong Shi, Jingang Yu, Zitong Yue, Huanjing Yang, Jingyu The School of Electrical and Information Engineering Tianjin University Tianjin300072 China Computer Vision and Pattern Recognition Laboratory School of Engineering Science Lappeenranta-Lahti University of Technology LUT Lappeenranta53850 Finland Beijing Institute for General Artificial Intelligence Beijing100080 China School of Software Engineering Xi’an Jiaotong University Xi’an710049 China Great Bay University Dongguan523000 China
Facial Action Unit (AU) detection is a crucial task in affective computing and social robotics as it helps to identify emotions expressed through facial expressions. Anatomically, there are innumerable correlations be... 详细信息
来源: 评论
NTIRE 2023 Image Shadow Removal Challenge Report
NTIRE 2023 Image Shadow Removal Challenge Report
收藏 引用
2023 IEEE/CVF Conference on computer vision and pattern recognition Workshops, CVPRW 2023
作者: Vasluianu, Florin-Alexandru Seizinger, Tim Timofte, Radu Cui, Shuhao Huang, Junshi Tian, Shuman Fan, Mingyuan Zhang, Jiaqi Zhu, Li Wei, Xiaoming Wei, Xiaolin Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjölund, Jens Schön, Thomas B. Dong, Xiaoyi Zhang, Xi Sheryl Li, Chenghua Leng, Cong Yeo, Woon-Ha Oh, Wang-Taek Lee, Yeo-Reum Ryu, Han-Cheol Luo, Jinting Jiang, Chengzhi Han, Mingyan Wu, Qi Lin, Wenjie Yu, Lei Li, Xinpeng Jiang, Ting Fan, Haoqiang Liu, Shuaicheng Xu, Shuning Song, Binbin Chen, Xiangyu Zhang, Shile Zhou, Jiantao Zhang, Zhao Zhao, Suiyi Zheng, Huan Gao, Yangcheng Wei, Yanyan Wang, Bo Ren, Jiahuan Luo, Yan Kondo, Yuki Miyata, Riku Yasue, Fuma Naruki, Taito Ukita, Norimichi Chang, Hua-En Yang, Hao-Hsiang Chen, Yi-Chung Chiang, Yuan-Chun Huang, Zhi-Kai Chen, Wei-Ting Chen, I-Hsiang Hsieh, Chia-Hsuan Kuo, Sy-Yen Xianwei, Li Fu, Huiyuan Liu, Chunlin Ma, Huadong Fu, Binglan He, Huiming Wang, Mengjia She, Wenxuan Liu, Yu Nathan, Sabari Kansal, Priya Zhang, Zhongjian Yang, Huabin Wang, Yan Zhang, Yanru Phutke, Shruti S. Kulkarni, Ashutosh Khan, Md Raqib Murala, Subrahmanyam Vipparthi, Santosh Kumar Ye, Heng Liu, Zixi Yang, Xingyi Liu, Songhua Wu, Yinwei Jing, Yongcheng Yu, Qianhao Zheng, Naishan Huang, Jie Long, Yuhang Yao, Mingde Zhao, Feng Zhao, Bowen Ye, Nan Shen, Ning Cao, Yanpeng Xiong, Tong Xia, Weiran Li, Dingwen Xia, Shuchen Computer Vision Lab Ifi Caidas University of Würzburg Germany Computer Vision Lab Eth Zürich Switzerland Meituan Group China Department of Information Technology Uppsala University Sweden Institute of Automation Chinese Academy of Sciences Beijing China Nanjing China Maicro Nanjing China Department of Artificial Intelligence Convergence Sahmyook University Seoul Korea Republic of Megvii Technology China University of Electronic Science and Technology of China China University of Macau China China Toyota Technological Institute Japan Graduate Institute of Electronics Engineering National Taiwan University Taiwan Department of Electrical Engineering National Taiwan University Taiwan Graduate Institute of Communication Engineering National Taiwan University Taiwan ServiceNow United States Beijing University of Post and Teleconmunication Beijing China Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education China Couger Inc. Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar Punjab Rupnagar India Research Institute Singapore National University of Singapore Singapore Research Institute Singapore University of Sydney Australia Brain-Inspired Vision Laboratory Information Science and Technology Institution University of Science and Technology of China China State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou310027 China Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou310027 China South China University of Technology China
This work reviews the results of the NTIRE 2023 Challenge on Image Shadow Removal. The described set of solutions were proposed for a novel dataset, which captures a wide range of object-light interactions. It consist... 详细信息
来源: 评论
Zero-Shot Audio Captioning Using Soft and Hard Prompts
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yiming Xu, Xuenan Du, Ruoyi Liu, Haohe Dong, Yuan Tan, Zheng-Hua Wang, Wenwu Ma, Zhanyu The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai200240 China The Department of Electronic Systems Aalborg University Aalborg9220 Denmark The Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
In traditional audio captioning methods, a model is usually trained in a fully supervised manner using a human-annotated dataset containing audio-text pairs and then evaluated on the test sets from the same dataset. S... 详细信息
来源: 评论
Survey on Deep Face Restoration: From Non-blind to Blind and Beyond
arXiv
收藏 引用
arXiv 2023年
作者: Li, Wenjie Wang, Mei Zhang, Kai Li, Juncheng Li, Xiaoming Zhang, Yuhang Gao, Guangwei Deng, Weihong Lin, Chia-Wen The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China The Computer Vision Lab ETH Zürich Zürich Switzerland The School of Communication and Information Engineering Shanghai University Shanghai China The Nanyang Technological University Singapore The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China The Department of Electrical Engineering National Tsing Hua University Hsinchu Taiwan
Face restoration (FR) is a specialized field within image restoration that aims to recover low-quality (LQ) face images into high-quality (HQ) face images. Recent advances in deep learning technology have led to signi... 详细信息
来源: 评论
Cross-ethnicity face anti-spoofing recognition challenge: A review
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Ajian Li, Xuan Wan, Jun Liang, Yanyan Escalera, Sergio Escalante, Hugo Jair Madadi, Meysam Jin, Yi Wu, Zhuoyuan Yu, Xiaogang Tan, Zichang Yuan, Qi Yang, Ruikun Zhou, Benjia Guo, Guodong Li, Stan Z. Faculty of Information Technology Avenida WaiLong Taipa Macau China School of Computer and Information Technology Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Science Beijing China Universitat de Barcelona and Computer Vision Center Barcelona Instituto Nacional de Astrofísica Óptica y Electrónica Puebla Mexico School of Software Beihang University Beijing China Institute of Deep Learning Baidu Research and National Engineering Laboratory for Deep Learning Technology and Application Beijing Westlake University Hangzhou China
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has achieved impressive progress recently due the excellent performance of deep neural networks and t... 详细信息
来源: 评论
Multi-Unit Floor Plan recognition and Reconstruction Using Improved Semantic Segmentation of Raster-Wise Floor Plans
arXiv
收藏 引用
arXiv 2024年
作者: Kratochvila, Lukas de Jong, Gijs Arkesteijn, Monique Bilík, Šimon Zemčík, Tomáš Horak, Karel Rellermeyer, Jan S. Department of Control and Instrumentation Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czech Republic Department of Software Technology Faculty of Electrical Engineering Mathematics and Computer Science TU Delft Delft Netherlands Department of Management in the Built Environment Faculty of Architecture and the Built Environment TU Delft Delft Netherlands Computer Vision and Pattern Recognition Laboratory Department of Computational Engineering Lappeenranta-Lahti University of Technology LUT Lappeenranta Finland Dependable and Scalable Software Systems Institute of Systems Engineering Faculty of Electrical Engineering and Computer Science Leibniz University Hannover Hannover Germany
Digital twins have a major potential to form a significant part of urban management in emergency planning, as they allow more efficient designing of the escape routes, better orientation in exceptional situations, and... 详细信息
来源: 评论
AIM 2020 Challenge on Image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on computer vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论