咨询与建议

限定检索结果

文献类型

  • 259 篇 会议
  • 204 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 464 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 277 篇 工学
    • 170 篇 计算机科学与技术...
    • 159 篇 软件工程
    • 88 篇 光学工程
    • 60 篇 控制科学与工程
    • 59 篇 信息与通信工程
    • 51 篇 生物医学工程(可授...
    • 51 篇 生物工程
    • 35 篇 机械工程
    • 29 篇 电气工程
    • 22 篇 电子科学与技术(可...
    • 18 篇 仪器科学与技术
    • 16 篇 土木工程
    • 16 篇 船舶与海洋工程
    • 14 篇 化学工程与技术
    • 11 篇 建筑学
    • 9 篇 交通运输工程
    • 9 篇 安全科学与工程
    • 7 篇 动力工程及工程热...
  • 168 篇 理学
    • 82 篇 物理学
    • 62 篇 数学
    • 53 篇 生物学
    • 26 篇 统计学(可授理学、...
    • 14 篇 化学
  • 50 篇 管理学
    • 32 篇 图书情报与档案管...
    • 21 篇 管理科学与工程(可...
  • 37 篇 医学
    • 33 篇 临床医学
    • 31 篇 基础医学(可授医学...
    • 17 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 7 篇 法学
    • 7 篇 社会学
  • 3 篇 经济学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 军事学

主题

  • 41 篇 computer vision
  • 35 篇 cameras
  • 25 篇 robot vision sys...
  • 16 篇 robot sensing sy...
  • 15 篇 robots
  • 15 篇 navigation
  • 14 篇 autonomous under...
  • 13 篇 trajectory
  • 13 篇 training
  • 12 篇 underwater vehic...
  • 12 篇 laboratories
  • 12 篇 feature extracti...
  • 11 篇 semantics
  • 11 篇 image reconstruc...
  • 10 篇 face recognition
  • 10 篇 convolution
  • 9 篇 motion estimatio...
  • 9 篇 object detection
  • 9 篇 magnetic resonan...
  • 9 篇 application soft...

机构

  • 27 篇 university of ch...
  • 26 篇 shenzhen institu...
  • 21 篇 siat branch shen...
  • 17 篇 institutes for r...
  • 16 篇 computer vision ...
  • 16 篇 institute of rob...
  • 16 篇 national enginee...
  • 13 篇 guangdong key la...
  • 13 篇 shenzhen key lab...
  • 12 篇 computer vision ...
  • 12 篇 shenyang institu...
  • 8 篇 computer vision ...
  • 8 篇 computer vision ...
  • 7 篇 computer vision ...
  • 7 篇 key laboratory o...
  • 7 篇 computer vision ...
  • 7 篇 innopolis univer...
  • 6 篇 robotics institu...
  • 6 篇 research institu...
  • 6 篇 computer vision ...

作者

  • 36 篇 shen linlin
  • 23 篇 qiao yu
  • 17 篇 pere ridao
  • 14 篇 xie weicheng
  • 13 篇 martí robert
  • 12 篇 marc carreras
  • 11 篇 valverde sergi
  • 11 篇 oliver arnau
  • 11 篇 linlin shen
  • 10 篇 r. garcia
  • 9 篇 x. cufi
  • 9 篇 narcís palomeras
  • 9 篇 lladó xavier
  • 8 篇 song siyang
  • 8 篇 wang yali
  • 8 篇 cabezas mariano
  • 8 篇 luo cheng
  • 8 篇 in so kweon
  • 8 篇 li qiufu
  • 7 篇 elbatel marawan

语言

  • 447 篇 英文
  • 16 篇 其他
  • 1 篇 中文
检索条件"机构=The Computer Vision and Robotics Institute"
464 条 记 录,以下是131-140 订阅
排序:
Augmented Box Replay: Overcoming Foreground Shift for Incremental Object Detection
arXiv
收藏 引用
arXiv 2023年
作者: Liu, Yuyang Cong, Yang Goswami, Dipam Liu, Xialei van de Weijer, Joost State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences China University of Chinese Academy of Sciences China South China University of Technology China Computer Vision Center Barcelona Spain VCIP CS Nankai University China Department of Computer Science Universitat Autònoma de Barcelona Spain
In incremental learning, replaying stored samples from previous tasks together with current task samples is one of the most efficient approaches to address catastrophic forgetting. However, unlike incremental classifi... 详细信息
来源: 评论
StyleGene: Crossover and Mutation of Region-level Facial Genes for Kinship Face Synthesis
StyleGene: Crossover and Mutation of Region-level Facial Gen...
收藏 引用
Conference on computer vision and Pattern Recognition (CVPR)
作者: Hao Li Xianxu Hou Zepeng Huang Linlin Shen Computer Vision Institute College of Computer Science and Software Engineering Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen University School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing Shenzhen University
High-fidelity kinship face synthesis has many potential applications, such as kinship verification, missing child identification, and social media analysis. However, it is challenging to synthesize high-quality descen...
来源: 评论
Scene Consistency Representation Learning for Video Scene Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Haoqian Chen, Keyu Luo, Yanan Qiao, Ruizhi Ren, Bo Liu, Haozhe Xie, Weicheng Shen, Linlin Computer Vision Institute Shenzhen University China Tencent YouTu Lab Shenzhen Institute of Artificial Intelligence and Robotics for Society China Guangdong Key Laboratory of Intelligent Information Processing China KAUST Saudi Arabia
A long-term video, such as a movie or TV show, is composed of various scenes, each of which represents a series of shots sharing the same semantic story. Spotting the correct scene boundary from the long-term video is... 详细信息
来源: 评论
UniTSFace: Unified Threshold Integrated Sample-to-Sample Loss for Face Recognition
arXiv
收藏 引用
arXiv 2023年
作者: Li, Qiufu Jia, Xi Zhou, Jiancan Shen, Linlin Duan, Jinming National Engineering Laboratory for Big Data System Computing Technology Shenzhen University China Computer Vision Institute Shenzhen University China School of Computer Science University of Birmingham United Kingdom Aqara Lumi United Technology Co. Ltd China Alan Turing Institute United Kingdom SZU Branch Shenzhen Institute of Artificial Intelligence and Robotics for Society China
Sample-to-class-based face recognition models can not fully explore the cross-sample relationship among large amounts of facial images, while sample-to-sample-based models require sophisticated pairing processes for t... 详细信息
来源: 评论
Deep Learning vs. Traditional 3d Registration: A Featureless 3d Registration Baseline
SSRN
收藏 引用
SSRN 2023年
作者: Bojanic, David Bartol, Kristijan Forest, Josep Petkovic, Tomislav Pribanic, Tomislav University of Zagreb Faculty of Electrical Engineering and Computing Unska 3 Zagreb10000 Croatia TU Dresden Dresden01069 Germany University of Girona Computer Vision and Robotics Research Institute Plaça de Sant Domènec 3 Girona17004 Spain
Recent 3D registration methods are mostly learning-based that either find correspondences in feature space and match them, or directly estimate the registration transformation from the given point cloud features. Ther... 详细信息
来源: 评论
Constricting Normal Latent Space for Anomaly Detection with Normal-only Training Data
arXiv
收藏 引用
arXiv 2024年
作者: Astrid, Marcella Zaheer, Muhammad Zaigham Lee, Seung-Ik Department of Artificial Intelligence University of Science and Technology Korea Republic of Field Robotics Research Section Electronics and Telecommunications Research Institute Korea Republic of Interdisciplinary Centre for Security Reliability and Trust University of Luxembourg Luxembourg Department of Computer Vision Mohamed Bin Zayed University of Artificial Intelligence United Arab Emirates
In order to devise an anomaly detection model using only normal training data, an autoencoder (AE) is typically trained to reconstruct the data. As a result, the AE can extract normal representations in its latent spa... 详细信息
来源: 评论
Inspecting Mega Solar Plants through computer vision and Drone Technologies
Inspecting Mega Solar Plants through Computer Vision and Dro...
收藏 引用
Frontiers of Information Technology (FIT)
作者: Syed Umaid Ahmed Muhammad Affan Muhammad Ilyas Raza Muhammad Harris Hashmi Department of Computer Sciences National University of Computer and Emerging Sciences Karachi Pakistan SeaTech School of Engineering University of Toulon La Garde France Institute of Robotics and Computer Vision Innopolis University Innopolis Russia Department of Computer Science University of Alabama at Birmingham Birmingham United States
This research presents a unique approach for monitoring the large-scale grid-connected photovoltaic modules in solar power plants using state-of-art object detection YOLOv5 algorithm and classical image processing tec... 详细信息
来源: 评论
Risk Estimation for ICU Patients with Personalized Anomaly-Encoded Bedside Patient Data
Risk Estimation for ICU Patients with Personalized Anomaly-E...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Kai Wu Ee Heng Chen Felix Wirth Keti Vitanova Rüdiger Lange Darius Burschka German Heart Center Munich Munich Germany Department of Computer Engineering Machine Vision and Perception Group TUM School of Computation Information and Technology Technical University of Munich Garching Germany MIRMI - Munich Institute of Robotics and Machine Intelligence Technical University of Munich Munich
We propose a novel framework to estimate intensive care unit patients' health risk continuously with anomaly-encoded patient data. This framework consists of two modules. In the first module, we use Gaussian proce...
来源: 评论
DermoExpert: Skin lesion classification using a hybrid convolutional neural network through segmentation, transfer learning, and augmentation
收藏 引用
Informatics in Medicine Unlocked 2022年 28卷
作者: Hasan, Md. Kamrul Elahi, Md. Toufick E. Alam, Md. Ashraful Jawad, Md. Tasnim Martí, Robert Department of Electrical and Electronic Engineering (EEE) Khulna University of Engineering & Technology (KUET) Khulna 9203 Bangladesh Computer Vision and Robotics Institute University of Girona Spain
Background and Objective: Although automated Skin Lesion Classification (SLC) is a crucial integral step in computer-aided diagnosis, it remains challenging due to variability in textures, colors, indistinguishable bo... 详细信息
来源: 评论
GM-DF: Generalized Multi-Scenario Deepfake Detection
arXiv
收藏 引用
arXiv 2024年
作者: Lai, Yingxin Yu, Zitong Yang, Jing Li, Bin Kang, Xiangui Shen, Linlin The School of Computing and Information Technology Great Bay University Dongguan523000 China National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen University Shenzhen518060 China The Guangdong Key Laboratory of Information Security The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510080 China Computer Vision Institute School of Computer Science & Software Engineering Shenzhen Institute of Artificial Intelligence and Robotics for Society Guangdong Key Laboratory of Intelligent Information Processing National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen518060 China
Existing face forgery detection usually follows the paradigm of training models in a single domain, which leads to limited generalization capacity when unseen scenarios and unknown attacks occur. In this paper, we ela... 详细信息
来源: 评论