咨询与建议

限定检索结果

文献类型

  • 310 篇 期刊文献
  • 180 篇 会议
  • 14 册 图书

馆藏范围

  • 504 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 327 篇 工学
    • 221 篇 计算机科学与技术...
    • 191 篇 软件工程
    • 64 篇 信息与通信工程
    • 56 篇 生物工程
    • 52 篇 生物医学工程(可授...
    • 45 篇 光学工程
    • 43 篇 电气工程
    • 43 篇 电子科学与技术(可...
    • 42 篇 控制科学与工程
    • 19 篇 土木工程
    • 19 篇 化学工程与技术
    • 14 篇 机械工程
    • 14 篇 仪器科学与技术
    • 13 篇 交通运输工程
    • 12 篇 环境科学与工程(可...
  • 216 篇 理学
    • 82 篇 数学
    • 66 篇 生物学
    • 64 篇 物理学
    • 35 篇 统计学(可授理学、...
    • 23 篇 化学
    • 23 篇 系统科学
    • 13 篇 地球物理学
  • 99 篇 管理学
    • 52 篇 管理科学与工程(可...
    • 49 篇 图书情报与档案管...
    • 35 篇 工商管理
  • 59 篇 医学
    • 49 篇 临床医学
    • 44 篇 基础医学(可授医学...
    • 25 篇 药学(可授医学、理...
    • 20 篇 公共卫生与预防医...
  • 16 篇 法学
    • 13 篇 社会学
  • 11 篇 经济学
  • 10 篇 农学
  • 9 篇 教育学
  • 2 篇 军事学

主题

  • 20 篇 artificial intel...
  • 11 篇 semantics
  • 10 篇 deep learning
  • 9 篇 computational mo...
  • 8 篇 magnetic resonan...
  • 8 篇 feature extracti...
  • 8 篇 machine learning
  • 7 篇 resource managem...
  • 7 篇 training
  • 7 篇 information stor...
  • 6 篇 covid-19
  • 6 篇 information syst...
  • 6 篇 semantic segment...
  • 6 篇 big data
  • 6 篇 image segmentati...
  • 6 篇 electroencephalo...
  • 6 篇 neural networks
  • 6 篇 database managem...
  • 6 篇 robustness
  • 5 篇 computers and so...

机构

  • 11 篇 alibaba group
  • 10 篇 department of el...
  • 10 篇 genomics researc...
  • 10 篇 data and knowled...
  • 10 篇 centre for behav...
  • 9 篇 faculty of compu...
  • 8 篇 biomedical magne...
  • 7 篇 institute for me...
  • 6 篇 department of bi...
  • 6 篇 university colle...
  • 6 篇 shandong provinc...
  • 6 篇 german centre fo...
  • 6 篇 center for data ...
  • 5 篇 leeds institute ...
  • 5 篇 data-driven comp...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...

作者

  • 20 篇 nürnberger andre...
  • 17 篇 chatterjee soumi...
  • 14 篇 speck oliver
  • 11 篇 noor jannatun
  • 7 篇 rose georg
  • 7 篇 stumme gerd
  • 6 篇 eising ciarán
  • 6 篇 manab meem arafa...
  • 6 篇 li haizhou
  • 6 篇 mondal joyanta j...
  • 5 篇 bakas spyridon
  • 5 篇 singh aryan
  • 5 篇 sistu ganesh
  • 5 篇 athanasios c. an...
  • 5 篇 ion victor gosea
  • 5 篇 ma jun
  • 5 篇 hotho andreas
  • 5 篇 hanika tom
  • 4 篇 aviad levis
  • 4 篇 alan p. marscher

语言

  • 476 篇 英文
  • 28 篇 其他
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=The Data Driven Computer Engineering Research Group"
504 条 记 录,以下是351-360 订阅
排序:
A bilinear identification-modeling framework from time domain data
收藏 引用
PAMM 2019年 第1期19卷
作者: Dimitrios S. Karachalios Ion Victor Gosea Athanasios C. Antoulas Max Planck Institute for Dynamics of Complex Technical Systems Data-Driven System Reduction and Identification (DRI) group Sandtorstraße 1 Magdeburg 39106 Rice University Houston Electrical and Computer Engineering Department 6100 Main St. Houston TX 77005 Baylor College of Medicine 1 Baylor Plaza Houston TX 77030
An ever-increasing need for improving the accuracy includes more involved and detailed features, thus inevitably leading to larger-scale dynamical systems [1]. To overcome this problem, efficient finite methods heavil...
来源: 评论
Genomic basis for RNA alterations in cancer (vol 578, pg 129, 2020)
收藏 引用
NATURE 2023年 第7948期614卷 E37-E37页
作者: Calabrese, Claudia Davidson, Natalie R. Demircioglu, Deniz Fonseca, Nuno A. He, Yao Lehmann, Kjong-Van Liu, Fenglin Shiraishi, Yuichi Soulette, Cameron M. Urban, Lara Greger, Liliana Li, Siliang Liu, Dongbing Perry, Marc D. Xiang, Qian Zhang, Fan Zhang, Junjun Bailey, Peter Erkek, Serap Hoadley, Katherine A. Hou, Yong Huska, Matthew R. Kilpinen, Helena Korbel, Jan O. Marin, Maximillian G. Markowski, Julia Nandi, Tannistha Pan-Hammarstrom, Qiang Pedamallu, Chandra Sekhar Siebert, Reiner Stark, Stefan G. Su, Hong Tan, Patrick Waszak, Sebastian M. Yung, Christina Zhu, Shida Awadalla, Philip Creighton, Chad J. Meyerson, Matthew Ouellette, B. F. Francis Wu, Kui Yang, Huanming Brazma, Alvis Brooks, Angela N. Goke, Jonathan Ratsch, Gunnar Schwarz, Roland F. Stegle, Oliver Zhang, Zemin European Molecular Biology Laboratory European Bioinformatics Institute Hinxton UK European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) Cambridge UK Genome Biology Unit European Molecular Biology Laboratory (EMBL) Heidelberg Germany CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources Universidade do Porto Vairão Portugal Berlin Institute for Medical Systems Biology Max Delbruck Center for Molecular Medicine Berlin Germany German Cancer Consortium (DKTK) partner site Berlin Germany German Cancer Research Center (DKFZ) Heidelberg Germany Berlin Institute for Medical Systems Biology Max Delbrück Center for Molecular Medicine Berlin Germany German Cancer Consortium (DKTK) Partner site Berlin Berlin Germany European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany Division of Computational Genomics and Systems Genetics German Cancer Research Center (DKFZ) Heidelberg Germany ETH Zurich Zurich Switzerland Memorial Sloan Kettering Cancer Center New York NY USA Weill Cornell Medical College New York NY USA SIB Swiss Institute of Bioinformatics Lausanne Switzerland University Hospital Zurich Zurich Switzerland Computational Biology Center Memorial Sloan Kettering Cancer Center New York NY USA Department of Biology ETH Zurich Zürich Switzerland Department of Computer Science ETH Zurich Zurich Switzerland Korea University Seoul South Korea Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York NY USA Department of Physiology and Biophysics Weill Cornell Medicine New York NY USA Institute for Computational Biomedicine Weill Cornell Medicine New York NY USA Controlled Department and Institution New York NY USA Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA National University of Singapore Singapore Singapore Genome Institute of Singapore Singapore Singapore Computational and Systems Biology Genome Institute of Singap
来源: 评论
Insights into end-to-end learning scheme for language identification
arXiv
收藏 引用
arXiv 2018年
作者: Cai, Weicheng Cai, Zexin Liu, Wenbo Wang, Xiaoqi Li, Ming School of Electronics and Information Technology Sun Yat-sen University Guangzhou China Data Science Research Center Duke Kunshan University Kunshan China Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh United States Jiangsu Jinling Science and Technology Group Limited
A novel interpretable end-to-end learning scheme for language identification is proposed. It is in line with the classical GMM i-vector methods both theoretically and practically. In the end-to-end pipeline, a general... 详细信息
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
Publisher Correction: Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI
收藏 引用
Nature medicine 2022年 第10期28卷 2218页
作者: Baptiste Vasey Myura Nagendran Bruce Campbell David A Clifton Gary S Collins Spiros Denaxas Alastair K Denniston Livia Faes Bart Geerts Mudathir Ibrahim Xiaoxuan Liu Bilal A Mateen Piyush Mathur Melissa D McCradden Lauren Morgan Johan Ordish Campbell Rogers Suchi Saria Daniel S W Ting Peter Watkinson Wim Weber Peter Wheatstone Peter McCulloch Nuffield Department of Surgical Sciences University of Oxford Oxford UK. baptiste.vasey@***. Institute of Biomedical Engineering Department of Engineering Science University of Oxford Oxford UK. baptiste.vasey@***. Critical Care Research Group Nuffield Department of Clinical Neurosciences University of Oxford Oxford UK. baptiste.vasey@***. UKRI Centre for Doctoral Training in AI for Healthcare Imperial College London London UK. University of Exeter Medical School Exeter UK. Royal Devon and Exeter Hospital Exeter UK. Institute of Biomedical Engineering Department of Engineering Science University of Oxford Oxford UK. Centre for Statistics in Medicine Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences University of Oxford Oxford UK. Institute of Health Informatics University College London London UK. British Heart Foundation Data Science Centre London UK. Health Data Research UK London UK. UCL Hospitals Biomedical Research Centre London UK. University Hospitals Birmingham NHS Foundation Trust Birmingham UK. Academic Unit of Ophthalmology Institute of Inflammation and Ageing College of Medical and Dental Sciences University of Birmingham Birmingham UK. Moorfields Eye Hospital NHS Foundation Trust London UK. Healthplus.ai-R&D BV Amsterdam The Netherlands. Nuffield Department of Surgical Sciences University of Oxford Oxford UK. Department of Surgery Maimonides Medical Center Brooklyn NY USA. The Wellcome Trust London UK. The Alan Turing Institute London UK. Department of General Anesthesiology Anesthesiology Institute Cleveland Clinic Cleveland OH USA. The Hospital for Sick Children Toronto ON Canada. Dalla Lana School of Public Health University of Toronto Toronto ON Canada. Morgan Human Systems Ltd Shrewsbury UK. Medicines and Healthcare products Regulatory Agency London UK. HeartFlow Inc. Redwood City CA USA. Departments of Computer Science Statistics and Health Policy and Division of Informatics Johns Hopkins Un
来源: 评论
Alert classification for the alerce broker system: The real-time stamp classifier
arXiv
收藏 引用
arXiv 2020年
作者: Carrasco-Davis, Rodrigo Reyes, E. Valenzuela, C. Förster, F. Estévez, P.A. Pignata, G. Bauer, F.E. Reyes, I. Sánchez-Sáez, P. Cabrera-Vives, G. Eyheramendy, S. Catelan, M. Arredondo, J. Castillo-Navarrete, E. Rodríguez-Mancini, D. Ruz-Mieres, D. Moya, A. Sabatini-Gacitúa, L. Sepúlveda-Cobo, C. Mahabal, A.A. Silva-Farfán, J. Camacho-Iñiguez, E. Galbany, L. Nuncio Monseñor Sótero Sanz 100 Providencia Santiago Chile Department of Electrical Engineering Universidad de Chile Av. Tupper 2007 Santiago8320000 Chile Center for Mathematical Modeling Universidad de Chile Beauchef 851 North building 7th floor Santiago8320000 Chile Faculty of Engineering and Sciences Universidad Adolfo Ibañez Diagonal Las Torres 2700 Peñalolén Santiago Chile Data Observatory Santiago Chile Departamento de Astronomía Universidad de Chile Casilla 36D Santiago Chile Departamento de Ciencias Físicas Universidad Andres Bello Av. Republica 230 Santiago8370146 Chile Instituto de Astrofísica and Centro de Astroingeniería Facultad de Física Pontificia Universidad Católica de Chile Casilla 306 Santiago 22 Chile Space Science Institute 4750 Walnut Street Suite 205 BoulderCO80301 United States Inria Chile Research Center Av. Apoquindo 2827 Las Condes Chile Department of Computer Science Universidad de Concepción Edmundo Larenas 219 Concepción Chile Institute of Astronomy University of Cambridge Madingley Road CambridgeCB3 0HA United Kingdom Cahill Center for Astrophysics California Institute of Technology 1200 E. California Boulevard PasadenaCA91125 United States Center for Data Driven Discovery California Institute of Technology PasadenaCA91125 United States Departamento de Física Teórica y del Cosmos Universidad de Granada GranadaE-18071 Spain
We present a real-time stamp classifier of astronomical events for the ALeRCE (Automatic Learning for the Rapid Classification of Events) broker. The classifier is based on a convolutional neural network, trained on a... 详细信息
来源: 评论
Author Correction: Inferring structural variant cancer cell fraction
收藏 引用
Nature communications 2022年 第1期13卷 7568页
作者: Marek Cmero Ke Yuan Cheng Soon Ong Jan Schröder Niall M Corcoran Tony Papenfuss Christopher M Hovens Florian Markowetz Geoff Macintyre Department of Surgery Division of Urology Royal Melbourne Hospital and University of Melbourne Parkville VIC 3050 Australia. cmerom@unimelb.edu.au. The Epworth Prostate Centre Epworth Hospital Richmond VIC 3121 Australia. cmerom@unimelb.edu.au. Department of Computing and Information Systems University of Melbourne Parkville VIC 3010 Australia. cmerom@unimelb.edu.au. Bioinformatics Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia. cmerom@unimelb.edu.au. Murdoch Children's Research Institute Parkville VIC 3052 Australia. cmerom@unimelb.edu.au. School of Computing Science University of Glasgow Sir Alwyn Williams Building Glasgow G12 8RZ UK. Cancer Research UK Cambridge Institute University of Cambridge Cambridge CB2 0RE UK. Electrical and Electronic Engineering University of Melbourne Parkville VIC 3010 Australia. Machine Learning Research Group Data61 Canberra ACT 2601 Australia. Research School of Computer Science Australian National University Canberra ACT 2601 Australia. Bioinformatics Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia. Department of Surgery Division of Urology Royal Melbourne Hospital and University of Melbourne Parkville VIC 3050 Australia. The Epworth Prostate Centre Epworth Hospital Richmond VIC 3121 Australia. Department of Computing and Information Systems University of Melbourne Parkville VIC 3010 Australia. geoff.macintyre@cruk.cam.ac.uk. Cancer Research UK Cambridge Institute University of Cambridge Cambridge CB2 0RE UK. geoff.macintyre@cruk.cam.ac.uk.
来源: 评论
Layerwise perturbation-based adversarial training for hard drive health degree prediction
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Jianguo Wang, Ji He, Lifang Li, Zhao Yu, Philip S. Department of Computer Science University of Illinois at Chicago ChicagoIL United States College of Systems Engineering National University of Defense Technology Changsha Hunan China Weill Cornell Department of Healthcare Policy & Research Cornell University NY United States Alibaba Group Hangzhou Zhejiang China Shanghai Institute for Advanced Communication and Data Science Shanghai Key Laboratory of Data Science Fudan University Shanghai China
With the development of cloud computing and big data, the reliability of data storage systems becomes increasingly important. Previous researchers have shown that machine learning algorithms based on SMART attributes ... 详细信息
来源: 评论
Case study: Approximations of the bessel function
arXiv
收藏 引用
arXiv 2017年
作者: Karachalios, D.S. Gosea, I.V. Zhang, Q. Antoulas, A.C. Data-Driven System Reduction and Identification Group Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany Department of Electrical and Computer Engineering Rice University Houston United States
The purpose of this note is to compare various approximation methods as applied to the inverse of the Bessel function of the first kind J01(s), in a given domain of the complex plane.30E10, 03C40, 65E99 Copyright ... 详细信息
来源: 评论
Scholarly Influence of the Conference and Labs of the Evaluation Forum eHealth Initiative: Review and Bibliometric Study of the 2012 to 2017 Outcomes
收藏 引用
JMIR research Protocols 2018年 第7期7卷 e10961页
作者: Suominen, Hanna Kelly, Liadh Goeuriot, Lorraine Research School of Computer Science College of Engineering and Computer Science The Australian National University Canberra ACT Australia Machine Learning Research Group Data61 Commonwealth Scientific and Industrial Research Organisation Canberra ACT Australia Faculty of Science and Technology University of Canberra Canberra ACT Australia Department of Future Technologies Faculty of Science and Engineering University of Turku Turku Finland Department of Computer Science Maynooth University Maynooth Co Kildare Ireland Grenoble Informatics Laboratory Université Grenoble Alpes Grenoble France
Background: The eHealth initiative of the Conference and Labs of the Evaluation Forum (CLEF) has aimed since 2012 to provide researchers working on health text analytics with annual workshops, shared development chall... 详细信息
来源: 评论