咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 图书情报与档案管...

主题

  • 1 篇 knowledge transf...
  • 1 篇 differential pri...

机构

  • 1 篇 academy for comp...
  • 1 篇 the department o...
  • 1 篇 datalab: data sc...
  • 1 篇 faculty of elect...
  • 1 篇 department of el...
  • 1 篇 school of inform...
  • 1 篇 university of ro...
  • 1 篇 the datalab: dat...
  • 1 篇 academy for engi...

作者

  • 2 篇 liu yang
  • 1 篇 zhu xiaogunag
  • 1 篇 li di
  • 1 篇 liu jing
  • 1 篇 guo juncen
  • 1 篇 teng liangyu
  • 1 篇 sun lianlong
  • 1 篇 song liang
  • 1 篇 zhu xiaoguang
  • 1 篇 zhou wei
  • 1 篇 wu jingyi

语言

  • 1 篇 英文
  • 1 篇 其他
检索条件"机构=The DataLab: Data Science and Informatics"
2 条 记 录,以下是1-10 订阅
排序:
Feature Calibration Enhanced Parameter Synthesis for CLIP-based Class-Incremental Learning
arXiv
收藏 引用
arXiv 2025年
作者: Guo, Juncen Liu, Yang Zhu, Xiaogunag Sun, Lianlong Teng, Liangyu Wu, Jingyi Li, Di Zhou, Wei Song, Liang Academy for Engineering and Technology Fudan University Shanghai200433 China DataLab: Data Science and Informatics University of California DavisCA95616 United States University of Rochester New York14627 United States Faculty of Electrical Engineering and Computer Science Ningbo University Ningbo315211 China Academy for Computer Science and Informatics Cardiff University Wales CF24 4AG United Kingdom
Class-Incremental Learning (CIL) enables models to continuously learn new class knowledge while retaining previous classes, facilitating adaptation and evolution in dynamic, real-world environments. Traditional CIL me... 详细信息
来源: 评论
Privacy-Preserving Video Anomaly Detection: A Survey
arXiv
收藏 引用
arXiv 2024年
作者: Liu, Jing Liu, Yang Zhu, Xiaoguang Department of Electrical and Computer Engineering The University of British Columbia VancouverBCV6T 1Z4 Canada School of Information Science and Technology Fudan University Shanghai200433 China The Department of Computer Science University of Toronto ONM5S 1A1 Canada The DataLab: Data Science and Informatics University of California DavisCA95616 United States
Video Anomaly Detection (VAD) aims to automatically analyze spatiotemporal patterns in surveillance videos collected from open spaces to detect anomalous events that may cause harm without physical contact. However, v... 详细信息
来源: 评论