Reinforcement learning (RL) algorithms combined with deep learning architectures have achieved tremendous success in many practical applications. However, the policies obtained by many deep reinforcement learning (DRL...
详细信息
This paper proposes a coordinated frequency control scheme for emergency frequency regulation of isolated power systems with a high penetration of wind *** proposed frequency control strategy is based on the novel non...
详细信息
This paper proposes a coordinated frequency control scheme for emergency frequency regulation of isolated power systems with a high penetration of wind *** proposed frequency control strategy is based on the novel nonlinear regulator theory,which takes advantage of nonlinearity of doubly fed induction generators(DFIGs)and generators to regulate the frequency of the power *** deviations and power imbalances are used to design nonlinear feedback controllers that achieve the reserve power distribution between generators and DFIGs,in various wind speed *** effectiveness and dynamic performance of the proposed nonlinear coordinated frequency control method are validated through simulations in an actual isolated power grid.
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks ofte...
详细信息
Robots are increasingly being deployed in densely populated environments, such as homes, hotels, and office buildings, where they rely on explicit instructions from humans to perform tasks. However, complex tasks often require multiple instructions and prolonged monitoring, which can be time-consuming and demanding for users. Despite this, there is limited research on enabling robots to autonomously generate tasks based on real-life scenarios. Advanced intelligence necessitates robots to autonomously observe and analyze their environment and then generate tasks autonomously to fulfill human requirements without explicit commands. To address this gap, we propose the autonomous generation of navigation tasks using natural language dialogues. Specifically, a robot autonomously generates tasks by analyzing dialogues involving multiple persons in a real office environment to facilitate the completion of item transportation between various *** propose the leveraging of a large language model(LLM) through chain-of-thought prompting to generate a navigation sequence for a robot from dialogues. We also construct a benchmark dataset consisting of 625 multiperson dialogues using the generation capability of LLMs. Evaluation results and real-world experiments in an office building demonstrate the effectiveness of the proposed method.
Gradient Inversion (GI) attacks are a ubiquitous threat in Federated Learning as they exploit gradient leakage to reconstruct supposedly private training data. Recent work has proposed to prevent gradient leakage...
详细信息
Health is one of the most precious aspects of every person's life. Whether we're talking about a well-functioning heart, nervous system, respiratory system, or simply body weight, each of these branches contri...
详细信息
Most of the underwater activities are carried out with a Remotely Operated Vehicle (ROV). ROVs are driven by thrusters, and controlling the movement of the ROV underwater is related to continuous regulation of the spe...
详细信息
Addressing the global challenge of ensuring a consistent and abundant supply of fresh fruit, particularly in the context of fruit crops, is hindered by the prevalence of plant diseases. These diseases directly impact ...
详细信息
Addressing the global challenge of ensuring a consistent and abundant supply of fresh fruit, particularly in the context of fruit crops, is hindered by the prevalence of plant diseases. These diseases directly impact the quality of fruits, leading to a decline in overall agricultural production. Mango leaf diseases pose significant threats to global mango production, necessitating accurate and efficient classification techniques for timely disease management. Our study focuses on introducing MangoLeafXNet, a customized Convolutional Neural Network (CNN) architecture specifically tailored for the classification of mango leaf diseases, along with a healthy class. Our proposed model comprises six layers optimized to capture intricate disease patterns, demonstrating superior performance compared with prevalent pre-trained models. The model is trained and evaluated on three publicly available datasets: MangoLeafBD (4000 images across 8 classes), MangoPest (16 pest classes including healthy leaves), and MLDID (3000 high-resolution images across 5 classes). Our model demonstrated exceptional classification performance, attaining 99.8% accuracy, 99.62% recall, 99.5% precision, and an F1-score of 99.56%. Further validation on the MangoPest dataset and the Mango Leaf Disease Identification Dataset (MLDID) resulted in accuracies of 96.31% and 96.33%, respectively, confirming the robustness and adaptability of MangoLeafXNet across different datasets. Additionally, we incorporate Explainable AI techniques, including GRAD-CAM, Saliency Map, and LIME to enhance the interpretability of our model. We deployed Gradio web interface to create an interactive interface that allows users to upload images of mango leaves and get real-time classification and validation results along with confidence scores. This contribution not only advances the state-of-the-art in mango leaf disease classification but also offers promising prospects for real-time disease diagnosis and precision agriculture
Nowadays, multidisciplinary research is found everywhere, especially due to the accelerated development of computerscience and information and communication technology in all economic and social fields. In many unive...
详细信息
This work presents an adaptive tracking guidance method for robotic fishes. The scheme enables robots to suppress external interference and eliminate motion jitter. An adaptive integral surge line-of-sight guidance ru...
详细信息
This work presents an adaptive tracking guidance method for robotic fishes. The scheme enables robots to suppress external interference and eliminate motion jitter. An adaptive integral surge line-of-sight guidance rule is designed to eliminate dynamics interference and sideslip issues. Limited-time yaw and surge speed observers are reported to fit disturbance variables in the model. The approximation values can compensate for the system's control input and improve the robots' tracking ***, this work develops a terminal sliding mode controller and third-order differential processor to determine the rotational torque and reduce the robots' run jitter. Then, Lyapunov's theory proves the uniform ultimate boundedness of the proposed method. Simulation and physical experiments confirm that the technology improves the tracking error convergence speed and stability of robotic fishes.
Our vision is, that an online lab will no longer be seen as a collection of monolithically constructed experiments but as a collection of laboratory devices that communicate with each other. Nowadays, many interested ...
详细信息
暂无评论