Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse *** to their heterogeneous nature and constrained resources...
详细信息
IoT has emerged as a game-changing technology that connects numerous gadgets to networks for communication,processing,and real-time monitoring across diverse *** to their heterogeneous nature and constrained resources,as well as the growing trend of using smart gadgets,there are privacy and security issues that are not adequately managed by conventional *** review offers a thorough analysis of contemporary AI solutions designed to enhance security within IoT *** intersection of AI technologies,including ML,and blockchain,with IoT privacy and security is systematically examined,focusing on their efficacy in addressing core security *** methodology involves a detailed exploration of existing literature and research on AI-driven privacy-preserving security mechanisms in *** reviewed solutions are categorized based on their ability to tackle specific security *** review highlights key advancements,evaluates their practical applications,and identifies prevailing research gaps and *** findings indicate that AI solutions,particularly those leveraging ML and blockchain,offerpromising enhancements to IoT privacy and security by improving threat detection capabilities and ensuring data *** paper highlights how AI technologies might strengthen IoT privacy and security and offer suggestions for upcoming studies intended to address enduring problems and improve the robustness of IoT networks.
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing de...
详细信息
Voice, motion, and mimicry are naturalistic control modalities that have replaced text or display-driven control in human-computer communication (HCC). Specifically, the vocals contain a lot of knowledge, revealing details about the speaker’s goals and desires, as well as their internal condition. Certain vocal characteristics reveal the speaker’s mood, intention, and motivation, while word study assists the speaker’s demand to be understood. Voice emotion recognition has become an essential component of modern HCC networks. Integrating findings from the various disciplines involved in identifying vocal emotions is also challenging. Many sound analysis techniques were developed in the past. Learning about the development of artificial intelligence (AI), and especially Deep Learning (DL) technology, research incorporating real data is becoming increasingly common these days. Thus, this research presents a novel selfish herd optimization-tuned long/short-term memory (SHO-LSTM) strategy to identify vocal emotions in human communication. The RAVDESS public dataset is used to train the suggested SHO-LSTM technique. Mel-frequency cepstral coefficient (MFCC) and wiener filter (WF) techniques are used, respectively, to remove noise and extract features from the data. LSTM and SHO are applied to the extracted data to optimize the LSTM network’s parameters for effective emotion recognition. Python Software was used to execute our proposed framework. In the finding assessment phase, Numerous metrics are used to evaluate the proposed model’s detection capability, Such as F1-score (95%), precision (95%), recall (96%), and accuracy (97%). The suggested approach is tested on a Python platform, and the SHO-LSTM’s outcomes are contrasted with those of other previously conducted research. Based on comparative assessments, our suggested approach outperforms the current approaches in vocal emotion recognition.
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limi...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limited maneuvering space, these carefully positioned cameras often struggle to provide effective visual observations during manipulation. Taking inspiration from human capabilities, we introduce a novel RL-based dual-arm active visual-guided manipulation model(DAVMM), which simultaneously infers “eye” actions and “hand” actions for two separate robotic arms(referred to as the vision-arm and the worker-arm) based on current observations, empowering the robot with the ability to actively perceive and interact with its environment. To handle the extensive redundant observation-action space, we propose a decouplable target-centric reward paradigm to offer stable guidance for the training process. For making fine-grained manipulation action decisions, alongside a global scene image encoder, we utilize an independent encoder to extract local target texture features,enabling the simultaneous acquisition of both global and detailed local information. Additionally, we employ residual-RL and curriculum learning techniques to further enhance our model's sample efficiency and training stability. We conducted comparative experiments and analyses of DAVMM against a set of strong baselines on three occluded and narrow-space manipulation tasks. DAVMM notably improves the success rates across all manipulation tasks and showcases rapid learning capabilities.
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each ***,all these leads report different aspects of an *** differences lie in the level of hig...
详细信息
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each ***,all these leads report different aspects of an *** differences lie in the level of highlighting and displaying information about that *** example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other *** this article,a new model was proposed using ECG functional and structural dependencies between heart *** the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed *** mutual information indices were used to assess the relationship between *** order to calculate mutual information,the correlation between the 12 ECG leads has been *** output of this step is a matrix containing all mutual ***,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac *** architecture of this capsule neural network has been modified to perform the classification *** the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman *** evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art *** proposed method shows an average accuracy of 2%superiority over similar works.
In today’s era, smartphones are used in daily lives because they are ubiquitous and can be customized by installing third-party apps. As a result, the menaces because of these apps, which are potentially risky for u...
详细信息
With advancements in technology, the study of data hiding (DH) in images has become more and more important. In this paper, we introduce a novel data hiding scheme that employs a voting strategy to predict pixels base...
详细信息
This study examines the use of experimental designs, specifically full and fractional factorial designs, for predicting Alzheimer’s disease with fewer variables. The full factorial design systematically investigates ...
详细信息
Due to the diversity of IoT devices and the complexity of the environment, it is difficult to effectively and accurately extract data features, resulting in poor clustering performance, poor accuracy in IoT anomaly da...
详细信息
Cyber-attacks and intrusions in networks refer to malicious activities that breach or damage data. These activities include direct attacks, such as denial-of-service (DoS) attacks, which overwhelm servers with request...
详细信息
暂无评论