In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communicati...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communication through open networks is insecure and has many vulnerabilities, making it susceptible to unauthorized access and misuse. Encryption models are used to secure medical data from unauthorized access. In this work, we propose a bit-level encryption model having three phases: preprocessing, confusion, and diffusion. This model is designed for different types of medical data including patient information, clinical data, medical signals, and images of different modalities. Also, the proposed model is effectively implemented for grayscale and color images with varying aspect ratios. Preprocessing has been applied based on the type of medical data. A random permutation has been used to scramble the data values to remove the correlation, and multilevel chaotic maps are fused with the cyclic redundancy check method. A circular shift is used in the diffusion phase to increase randomness and security, providing protection against potential attacks. The CRC method is further used at the receiver side for error detection. The performance efficiency of the proposed encryption model is proved in terms of histogram analysis, information entropy, correlation analysis, signal-to-noise ratio, peak signal-to-noise ratio, number of pixels changing rate, and unified average changing intensity. The proposed bit-level encryption model therefore achieves information entropy values ranging from 7.9669 to 8.000, which is close to the desired value of 8. Correlation coefficient values of the encrypted data approach to zero or are negative, indicating minimal correlation in encrypted data. Resistance against differential attacks is demonstrated by NPCR and UACI values exceeding 0.9960 and 0.3340, respectively. The key space of the proposed model is 1096, which is substantially mor
Heart disease is the highest cause of death in the world. Arrhythmia is an abnormality in the rhythm of the heartbeat. The heart beats too fast, too slow, or irregularly. Arrhythmias are not always dangerous, e.g., so...
详细信息
In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be ***,...
详细信息
In recent years,intelligent robots are extensively applied in the field of the industry and intelligent rehabilitation,wherein the human-robot interaction(HRI)control strategy is a momentous part that needs to be ***,the efficacy and robustness of the HRI control algorithm in the presence of unknown external disturbances deserve to be *** deal with these urgent issues,in this study,artificial systems,computational experiments and a parallel execution intelligent control framework are constructed for the HRI *** upper limb-robotic exoskeleton system is re-modelled as an artificial *** on surface electromyogram-based subject's active motion intention in the practical system,a non-convex function activated anti-disturbance zeroing neurodynamic(NC-ADZND)controller is devised in the artificial system for parallel interaction and HRI control with the practical ***,the linear activation function-based zeroing neurodynamic(LAF-ZND)controller and proportionalderivative(posterior deltoid(PD))controller are presented and *** results substantiate the global convergence and robustness of the proposed controller in the presence of different external *** addition,the simulation results verify that the NC-ADZND controller is better than the LAF-ZND and the PD controllers in respect of convergence order and anti-disturbance characteristics.
The ever-increasing number of Internet-of-Thing devices requires the development of edge-computing platforms to address the associated demand for big data processing at low power consumption while minimizing cloud com...
详细信息
The growing concerns over mitigating climate change effects resulted in power system planning and generation expansion strategies that aim in increasing penetration of intermittent renewable energy sources (RES) to fu...
详细信息
With the exponential growth in information related applications and the continuous increase in voice over IP (VoIP) applications, the carriers are expanding their networks to provide improved services to their end use...
详细信息
The arithmetic of computing multiple scalar multiplications in an elliptic curve group then adding them together is called multi-scalar multiplication (MSM). MSM over fixed points dominates the time consumption in the...
详细信息
Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during ***,these fault currents differ from the typical fault currents fed by synchron...
详细信息
Fault currents emanating from inverter-based resources(IBRs)are controlled to follow specific references to support the power grid during ***,these fault currents differ from the typical fault currents fed by synchronous generators,resulting in an improper operation of conventional phase selection methods(PSMs).In this paper,the relative angles between sequence voltages measured at the relay location are determined analytically in two stages:(1)a short-circuit analysis is performed at the fault location to determine the relative angles between sequence voltages;and(2)an analysis of the impact of transmission line on the phase difference between the sequence voltages of relay and fault is conducted for different IBR ***,new PSM zones based on relative angles between sequence voltages are devised to facilitate accurate PSM regardless of the fault currents,resistances,or locations of *** time-domain simulations confirm the accuracy of the proposed PSM with different fault locations,resistances,types,and currents.
DolphinAttacks (i.e., inaudible voice commands) modulate audible voices over ultrasounds to inject malicious commands silently into voice assistants and manipulate controlled systems (e.g., doors or smart speakers). E...
详细信息
DolphinAttacks (i.e., inaudible voice commands) modulate audible voices over ultrasounds to inject malicious commands silently into voice assistants and manipulate controlled systems (e.g., doors or smart speakers). Eliminating DolphinAttacks is challenging if ever possible since it requires to modify the microphone hardware. In this paper, we design EarArray, a lightweight method that can not only detect such attacks but also identify the direction of attackers without requiring any extra hardware or hardware modification. Essentially, inaudible voice commands are modulated on ultrasounds that inherently attenuate faster than the one of audible sounds. By inspecting the command sound signals via the built-in multiple microphones on smart devices, EarArray is able to estimate the attenuation rate and thus detect the attacks. We propose a model of the propagation of audible sounds and ultrasounds from the sound source to a voice assistant, e.g., a smart speaker, and illustrate the underlying principle and its feasibility. We implemented EarArray using two specially-designed microphone arrays and our experiments show that EarArray can detect inaudible voice commands with an accuracy of above 99% and recognize the direction of the attackers with an accuracy of 97.89% and can also detect the laser-based attack with an accuracy of 100%. IEEE
暂无评论