The Internet of Things (IoT) facilitates the delivery of intelligent services by sensing, gathering, processing, and exchanging data from millions of linked smart devices. The Internet of Things (IoT), which is based ...
详细信息
In optical applications where avalanche photodiodes (APDs) provide the benefit of high sensitivity, Sb-based materials systems such as AlInAsSb and AlGaAsSb have shown extremely low excess noise factors. The Monte Car...
详细信息
This paper introduces an artificial intelligence (AI) methodology designed to enhance the output of two-dimensional (2D) electromagnetic imaging systems, specifically tailored for the imaging of conductive objects uti...
详细信息
In this paper, we consider the problem of finding a meta-learning online control algorithm that can learn across the tasks when faced with a sequence of N (similar) control tasks. Each task involves controlling a line...
详细信息
Nowadays, unmanned aerial vehicles (UAVs) play a significant role in transmission line inspection. This article focuses on the inertial measurement unit (IMU) as a critical component to study the impacts of electromag...
详细信息
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection *** study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural net...
详细信息
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection *** study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection *** common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection *** integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware *** on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional *** approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity *** results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions.
The next generation of Quantum Internet of Things (QIoT) has the potential to revolutionize various sectors, including smart homes, healthcare, and smart cities, by enabling more sophisticated and interconnected syste...
详细信息
The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leadsto wide losses for various organizations. These dangers have proven that signature-based approaches are ins...
详细信息
The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leadsto wide losses for various organizations. These dangers have proven that signature-based approaches are insufficientto prevent emerging and polymorphic attacks. Therefore, this paper is proposing a Robust Malicious ExecutableDetection (RMED) using Host-based Machine Learning Classifier to discover malicious Portable Executable (PE)files in hosts using Windows operating systems through collecting PE headers and applying machine learningmechanisms to detect unknown infected files. The authors have collected a novel reliable dataset containing 116,031benign files and 179,071 malware samples from diverse sources to ensure the efficiency of RMED *** most effective PE headers that can highly differentiate between benign and malware files were selected totrain the model on 15 PE features to speed up the classification process and achieve real-time detection formalicious executables. The evaluation results showed that RMED succeeded in shrinking the classification timeto 91 milliseconds for each file while reaching an accuracy of 98.42% with a false positive rate equal to 1.58. Inconclusion, this paper contributes to the field of cybersecurity by presenting a comprehensive framework thatleverages Artificial Intelligence (AI) methods to proactively detect and prevent cyber-attacks.
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first prop...
详细信息
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first proposed in this ***,a novel four-dimensional fractional-order memristive cellular neural network(FO-MCNN)model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its ***,its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation ***,it is used toward secure communication application *** it as the pseudo-random number generator(PRNG),a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing(ASR-CS)***,the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance.
The world progresses towards enabling renewable sources into the mainstream supply of energy and it is imperative to develop systems that can handle new challenges and disturbances. This paper aims at machine learning...
详细信息
暂无评论