The field of computer vision is predominantly driven by supervised models, which, despite their efficacy, are computationally expensive and often intractable for many applications. Recently, research has expedited alt...
详细信息
In an Internet of Things (IoT) assisted Wireless Sensor Network (WSN), the location of the Base Station (BS) remains important. BS serves as the central hub for data collection, aggregation and communication within th...
详细信息
We explore the impact of coarse quantization on matrix completion in the extreme scenario of dithered one-bit sensing, where the matrix entries are compared with random dither levels. In particular, instead of observi...
详细信息
We explore the impact of coarse quantization on matrix completion in the extreme scenario of dithered one-bit sensing, where the matrix entries are compared with random dither levels. In particular, instead of observing a subset of high-resolution entries of a low-rank matrix, we have access to a small number of one-bit samples, generated as a result of these comparisons. In order to recover the low-rank matrix using its coarsely quantized known entries, we begin by transforming the problem of one-bit matrix completion (one-bit MC) with random dithering into a nuclear norm minimization problem. The one-bit sampled information is represented as linear inequality feasibility constraints. We then develop the popular singular value thresholding (SVT) algorithm to accommodate these inequality constraints, resulting in the creation of the One-Bit SVT (OBSVT). Our findings demonstrate that incorporating multiple random dither sequences in one-bit MC can significantly improve the performance of the matrix completion algorithm. In pursuit of achieving this objective, we utilize diverse dithering schemes, namely uniform, Gaussian, and discrete dithers. To accelerate the convergence of our proposed algorithm, we introduce three variants of the OB-SVT algorithm. Among these variants is the randomized sketched OB-SVT, which departs from using the entire information at each iteration, opting instead to utilize sketched data. This approach effectively reduces the dimension of the operational space and accelerates the convergence. We perform numerical evaluations comparing our proposed algorithm with the maximum likelihood estimation method previously employed for one-bit MC, and demonstrate that our approach can achieve a better recovery performance. Authors
In recent decades, one of the challenging issues faced by global nations is the degradation of water resources. Traditionally, water samples are manually collected from different locations to monitor its standards. Su...
详细信息
Insulators are critical components of transmission lines but are prone to failures that can jeopardize the safe operation of electrical power systems. Accurate detection of insulator defects is essential for timely ma...
详细信息
The relay channel, consisting of a source-destination pair along with a relay, is a fundamental component of cooperative communications. While the capacity of a general relay channel remains unknown, various relaying ...
详细信息
Phishing is one of the most important security threats in modern information systems causing different levels of damages to end-users and service providers such as financial and reputational losses. State-of-the-art a...
详细信息
The need for multi-input DC-DC converters is highly demanded in the context of the integration of different energy sources. When integrating several energy sources, such as batteries, solar PV arrays, fuel cells, etc....
详细信息
In thicker polymer active layers charge collection efficiency suffers due to low carrier mobility and increased recombination losses. In thin absorber polymer solar cell to increase absorption, light-trapping techniqu...
详细信息
In thicker polymer active layers charge collection efficiency suffers due to low carrier mobility and increased recombination losses. In thin absorber polymer solar cell to increase absorption, light-trapping techniques and plasmonic structures are essential. This study investigates the effect of shell thickness on the photocurrent density of a poly(3-hexylthiophene): phenyl-C61- butyric acid methyl ester (P3HT:PCBM) polymer based solar cell incorporating core–shell nanoparticles with configurations of Au–Ag and Ag-Au core–shell nanoparticles. Through a series of simulation, the photocurrent density was calculated as a function of shell thickness. The results demonstrate that, for both nanoparticle configurations, the photocurrent density generally increases with shell thickness, reaching an optimal point before stabilizing or slightly decreasing. Additionally, the effects of dielectric shells made of SiO₂ and Al₂O₃ on its performance parameters were analyzed. The study also found that the photocurrent decreases with increasing shell thickness for both SiO₂ and Al₂O₃ shells, with a more pronounced decrease for SiO₂ due to its smaller refractive index and greater change in shorter wavelengths. The photocurrent density of 13.74 mA/cm2 is achieved for a cell with a thickness of 80 nm without nanoparticles. This value increases to 16.62 mA/cm2 for a cell incorporating Ag nanoparticles and reaches 19.3 mA/cm2 for a cell with Au–Ag core–shell nanoparticles at the optimal shell thickness. The power conversion efficiency of the polymer solar cell increases from 7.02% without nanoparticles to 8.67% with Ag, 8.45% with Au, and reaches the highest value of 10.26% with Au–Ag core–shell nanoparticles, highlighting the superior performance of the core–shell configuration. This superior performance is attributed to the enhanced plasmonic effects of the Au–Ag combination, which facilitates better light trapping and absorption. These findings underscore the importance of optimizing
Controlling an active distribution network(ADN)from a single PCC has been advantageous for improving the performance of coordinated Intermittent RESs(IRESs).Recent studies have proposed a constant PQ regulation approa...
详细信息
Controlling an active distribution network(ADN)from a single PCC has been advantageous for improving the performance of coordinated Intermittent RESs(IRESs).Recent studies have proposed a constant PQ regulation approach at the PCC of ADNs using coordination of non-MPPT based ***,due to the intermittent nature of DGs coupled with PCC through uni-directional broadcast communication,the PCC becomes vulnerable to transient *** address this challenge,this study first presents a detailed mathematical model of an ADN from the perspective of PCC regulation to realize rigidness of PCC against ***,an H_(∞)controller is formulated and employed to achieve optimal performance against disturbances,consequently,ensuring the least oscillations during transients at ***,an eigenvalue analysis is presented to analyze convergence speed limitations of the newly derived system ***,simulation results show the proposed method offers superior performance as compared to the state-of-the-art methods.
暂无评论