Integrating small and large-scale photovoltaic(PV)solar systems into electrical distribution systems has become mandatory due to increased electricity bills and the concern for limiting greenhouse ***,the reliable and...
详细信息
Integrating small and large-scale photovoltaic(PV)solar systems into electrical distribution systems has become mandatory due to increased electricity bills and the concern for limiting greenhouse ***,the reliable and efficient operation of PV-based distribution systems can be confronted by the intermittence and high variability of solar sources and their consequential *** this regard,this article suggests a moderated fault-clearing strategy based on the incremental conductance–maximum power point tracking(IC–MPPT)technique and artificial neural networks(ANNs)to enhance fault detection,localization,and restoration pro-cesses in PV-based distribution *** proposed strategy leverages IC–MPPT to ensure optimal power generation from the PV solar system,even in the presence of *** tracking the maximum power point,the algorithm maintains the performance of the system and mitigates against the impact of faults on the output ***,an ANN is employed to improve fault detec-tion and localization *** developed ANN-based moderated fault-clearing strategy is trained using historical data and fault scenarios,enabling it to recognize fault patterns and make informed decisions through extensive simulations and comparisons with traditional fault-clearing *** accomplish this study,benchmarks in PV-based distribution systems are constructed and em-ployed using the MATLAB®/Simulink®software ***,to validate the efficacy of the developed ANN-based moderated fault-clearing strategy,a real case study of a 1-MW PV-based distribution system in an industrial field located in Giza governorate,Egypt,is tested and *** obtained results demonstrate the effectiveness of the IC–MPPT and ANN-based moderated fault-clearing strategy in achieving faster fault detection,precise fault localization,and efficient restoration in PV solar-based dis-tribution systems while preserving maximum power extraction under small and larg
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 *** recent years,the concept of digital siblings has generated considerable academic and practical ***,a...
详细信息
The concept of the digital twin,also known colloquially as the DT,is a fundamental principle within Industry 4.0 *** recent years,the concept of digital siblings has generated considerable academic and practical ***,academia and industry have used a variety of interpretations,and the scientific literature lacks a unified and consistent definition of this *** purpose of this study is to systematically examine the definitional landscape of the digital twin concept as outlined in scholarly literature,beginning with its origins in the aerospace domain and extending to its contemporary interpretations in the manufacturing ***,this investigationwill focus on the research conducted on Industry 4.0 and smartmanufacturing,elucidating the diverse applications of digital twins in fields including aerospace,intelligentmanufacturing,intelligent transportation,and intelligent cities,among others.
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these proce...
详细信息
Numerical simulation is employed to investigate the initial state of avalanche in polydisperse particle *** and propagation processes are illustrated for pentadisperse and triadisperse particle systems,*** these processes,particles involved in the avalanche grow slowly in the early stage and explosively in the later stage,which is clearly different from the continuous and steady growth trend in the monodisperse *** examining the avalanche propagation,the number growth of particles involved in the avalanche and the slope of the number growth,the initial state can be divided into three stages:T1(nucleation stage),T2(propagation stage),T3(overall avalanche stage).We focus on the characteristics of the avalanche in the T2 stage,and find that propagation distances increase almost linearly in both axial and radial directions in polydisperse *** also consider the distribution characteristics of the average coordination number and average velocity for the moving *** results support that the polydisperse particle systems are more stable in the T2 stage.
The adversarial wiretap channel of type II (AWTC-II) is a communication channel that can a) read a fraction of the transmitted symbols up to a given bound and b) induce both errors and erasures in a fraction of the sy...
详细信息
Multi-exposure image fusion (MEF) involves combining images captured at different exposure levels to create a single, well-exposed fused image. MEF has a wide range of applications, including low light, low contrast, ...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,in...
详细信息
Thyroid nodules,a common disorder in the endocrine system,require accurate segmentation in ultrasound images for effective diagnosis and ***,achieving precise segmentation remains a challenge due to various factors,including scattering noise,low contrast,and limited resolution in ultrasound *** existing segmentation models have made progress,they still suffer from several limitations,such as high error rates,low generalizability,overfitting,limited feature learning capability,*** address these challenges,this paper proposes a Multi-level Relation Transformer-based U-Net(MLRT-UNet)to improve thyroid nodule *** MLRTUNet leverages a novel Relation Transformer,which processes images at multiple scales,overcoming the limitations of traditional encoding *** transformer integrates both local and global features effectively through selfattention and cross-attention units,capturing intricate relationships within the *** approach also introduces a Co-operative Transformer Fusion(CTF)module to combine multi-scale features from different encoding layers,enhancing the model’s ability to capture complex patterns in the ***,the Relation Transformer block enhances long-distance dependencies during the decoding process,improving segmentation *** results showthat the MLRT-UNet achieves high segmentation accuracy,reaching 98.2% on the Digital Database Thyroid Image(DDT)dataset,97.8% on the Thyroid Nodule 3493(TG3K)dataset,and 98.2% on the Thyroid Nodule3K(TN3K)*** findings demonstrate that the proposed method significantly enhances the accuracy of thyroid nodule segmentation,addressing the limitations of existing models.
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)hav...
详细信息
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)have been integrated into the distribution systems to enhance voltage con-trol ***,the M-SOP voltage control recalculated in real time cannot adapt to the rapid fluctuations of photovol-taic(PV)power,fundamentally limiting the voltage controllabili-ty of *** address this issue,a full-model-free adaptive graph deep deterministic policy gradient(FAG-DDPG)model is proposed for M-SOP voltage ***,the attention-based adaptive graph convolutional network(AGCN)is lever-aged to extract the complex correlation features of nodal infor-mation to improve the policy learning ***,the AGCN-based surrogate model is trained to replace the power flow cal-culation to achieve model-free ***,the deep deterministic policy gradient(DDPG)algorithm allows FAG-DDPG model to learn an optimal control strategy of M-SOP by continuous interactions with the AGCN-based surrogate *** tests have been performed on modified IEEE 33-node,123-node,and a real 76-node distribution systems,which demonstrate the effectiveness and generalization ability of the proposed FAG-DDPGmodel.
The large-scale penetration of photovoltaic(PV)units and controllable loads such as electric vehicles(EVs)ren-der the distribution networks prone to frequent,uncertain,and simultaneous over/under *** coordinated contr...
详细信息
The large-scale penetration of photovoltaic(PV)units and controllable loads such as electric vehicles(EVs)ren-der the distribution networks prone to frequent,uncertain,and simultaneous over/under *** coordinated control of devices such as on-load tap changer(OLTC),PV inverters,and EV chargers seem efficient in regulating the distribution net-work voltage within normal operation ***,the need for measuring infrastructure throughout the distribution net-work and communication setup to all control devices makes it practically and economically ***,for large-scale networks,the large measurement dataset of the network and distributed control resources increase the computational complexity and the response *** paper proposes a volt-age control strategy based on dual-stage model predictive con-trol by coordinating devices such as OLTC and controllable PVs and EV charging stations.A minimum set of available con-trol resources is identified to establish the voltage control in the network with reduced communication and minimum measuring infrastructure,using a reduced model *** are performed on 33-bus distribution network and the modified IEEE 123-bus distribution network to validate the efficacy of the proposed control strategy.
Diffusion models, a powerful and universal generative artificial intelligence technology, have achieved tremendous success and opened up new possibilities in diverse applications. In these applications, diffusion mode...
详细信息
Diffusion models, a powerful and universal generative artificial intelligence technology, have achieved tremendous success and opened up new possibilities in diverse applications. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active control towards task-desired properties. Despite the significant empirical success, theoretical underpinnings of diffusion models are very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models to highlight their sample generation capabilities under various control goals. At the same time, we dive into the unique working flow of diffusion models through the lens of stochastic processes. We identify theoretical challenges in analyzing diffusion models, owing to their complicated training procedure and interaction with the underlying data distribution. To address these challenges, we overview several promising advances, demonstrating diffusion models as an efficient distribution learner and a sampler. Furthermore, we introduce a new avenue in high-dimensional structured optimization through diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded exposure for stimulating forward-looking theories and methods of diffusion models.
The component aging has become a significant concern worldwide,and the frequent failures pose a serious threat to the reliability of modern power *** light of this issue,this paper presents a power system reliability ...
详细信息
The component aging has become a significant concern worldwide,and the frequent failures pose a serious threat to the reliability of modern power *** light of this issue,this paper presents a power system reliability evaluation method based on sequential Monte Carlo simulation(SMCS)to quantify system reliability considering multiple failure modes of ***,a three-state component reliability model is established to explicitly describe the state transition process of the component subject to both aging failure and random failure *** this model,the impact of each failure mode is decoupled and characterized as the combination of two state duration variables,which are separately modeled using specific probability ***,SMCS is used to integrate the three-state component reliability model for state transition sequence generation and system reliability ***,various reliability metrics,including the probability of load curtailment(PLC),expected frequency of load curtailment(EFLC),and expected energy not supplied(EENS),can be *** ensure the applicability of the proposed method,Hash table grouping and the maximum feasible load level judgment techniques are jointly adopted to enhance its computational *** studies are conducted on different aging scenarios to illustrate and validate the effectiveness and practicality of the proposed method.
暂无评论