咨询与建议

限定检索结果

文献类型

  • 590 篇 期刊文献
  • 338 篇 会议

馆藏范围

  • 928 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 570 篇 工学
    • 357 篇 计算机科学与技术...
    • 298 篇 软件工程
    • 112 篇 生物医学工程(可授...
    • 105 篇 生物工程
    • 101 篇 信息与通信工程
    • 87 篇 控制科学与工程
    • 67 篇 电气工程
    • 65 篇 光学工程
    • 44 篇 电子科学与技术(可...
    • 36 篇 机械工程
    • 28 篇 化学工程与技术
    • 27 篇 仪器科学与技术
    • 25 篇 材料科学与工程(可...
    • 15 篇 建筑学
    • 15 篇 安全科学与工程
    • 14 篇 土木工程
    • 14 篇 交通运输工程
  • 401 篇 理学
    • 189 篇 数学
    • 159 篇 生物学
    • 84 篇 物理学
    • 48 篇 统计学(可授理学、...
    • 43 篇 系统科学
    • 27 篇 化学
  • 167 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 75 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 145 篇 医学
    • 125 篇 临床医学
    • 67 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
  • 22 篇 法学
    • 20 篇 社会学
  • 17 篇 教育学
  • 12 篇 农学
  • 10 篇 经济学
  • 7 篇 文学
  • 3 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 electroencephalo...
  • 27 篇 feature extracti...
  • 23 篇 deep learning
  • 21 篇 training
  • 21 篇 multiobjective o...
  • 17 篇 neural networks
  • 16 篇 machine learning
  • 14 篇 reinforcement le...
  • 11 篇 task analysis
  • 11 篇 optimization
  • 11 篇 brain-computer i...
  • 11 篇 evolutionary com...
  • 10 篇 deep neural netw...
  • 10 篇 generative adver...
  • 10 篇 brain modeling
  • 10 篇 clustering algor...
  • 9 篇 object detection
  • 9 篇 three-dimensiona...
  • 9 篇 convolution
  • 9 篇 semantics

机构

  • 98 篇 guangdong provin...
  • 33 篇 department of co...
  • 32 篇 institute of sci...
  • 27 篇 nanhu brain-comp...
  • 24 篇 beijing advanced...
  • 23 篇 southern univers...
  • 23 篇 college of compu...
  • 23 篇 research institu...
  • 22 篇 department of co...
  • 17 篇 shanghai key lab...
  • 16 篇 henan key labora...
  • 15 篇 ji hua laborator...
  • 15 篇 guangdong provin...
  • 14 篇 key laboratory o...
  • 14 篇 research center ...
  • 13 篇 shanghai center ...
  • 13 篇 university of ch...
  • 12 篇 the guangdong pr...
  • 12 篇 school of automa...
  • 11 篇 peng cheng labor...

作者

  • 50 篇 ishibuchi hisao
  • 35 篇 yao xin
  • 33 篇 tang ke
  • 22 篇 pang lie meng
  • 21 篇 liu shengcai
  • 20 篇 shang ke
  • 20 篇 nan yang
  • 18 篇 hisao ishibuchi
  • 18 篇 liu jialin
  • 14 篇 shu tianye
  • 14 篇 yang peng
  • 13 篇 jianfeng feng
  • 13 篇 xin yao
  • 12 篇 cheng ran
  • 12 篇 zhang junping
  • 12 篇 yang nan
  • 11 篇 zhang yangsong
  • 11 篇 pan gang
  • 11 篇 feng jianfeng
  • 11 篇 shan hongming

语言

  • 862 篇 英文
  • 49 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"机构=The Henan Key Laboratory of Brain Science and Brain Computer Interface Technology"
928 条 记 录,以下是201-210 订阅
Empirical Hypervolume Optimal µ-Distributions on Complex Pareto Fronts
Empirical Hypervolume Optimal µ-Distributions on Complex Pa...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Ke Shang Tianye Shu Guotong Wu Yang Nan Lie Meng Pang Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Hypervolume optimal µ-distribution is the distribution of µ solutions maximizing the hypervolume indicator of µ solutions on a specific Pareto front. Most studies have focused on simple Pareto fronts su...
来源: 评论
Analysis of Partition Methods for Dominated Solution Removal from Large Solution Sets
Analysis of Partition Methods for Dominated Solution Removal...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Tianye Shu Yang Nan Ke Shang Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
In evolutionary multi-objective optimization (EMO), one important issue is to efficiently remove dominated solutions from a large number of solutions examined by an EMO algorithm. An efficient approach to remove domin...
来源: 评论
Noninvasive Tracking of Every Individual in Unmarked Mouse Groups Using Multi-Camera Fusion and Deep Learning
收藏 引用
Neuroscience Bulletin 2023年 第6期39卷 893-910页
作者: Feng Su Yangzhen Wang Mengping Wei Chong Wang Shaoli Wang Lei Yang Jianmin Li Peijiang Yuan Dong-Gen Luo Chen Zhang Department of Neurobiology School of Basic Medical SciencesBeijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijing100069China Chinese Institute for Brain Research Beijing102206China State Key Laboratory of Translational Medicine and Innovative Drug Development Nanjing210000China Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China School of Life Sciences Tsinghua UniversityBeijing100084China School of Biological Science and Medical Engineering Beihang UniversityBeijing100191China The Key Laboratory of Developmental Genes and Human Disease Institute of Life SciencesSoutheast UniversityNanjing210096JiangsuChina Institute for Artificial Intelligence the State Key Laboratory of Intelligence Technology and SystemsBeijing National Research Center for Information Science and TechnologyDepartment of Computer Science and TechnologyTsinghua UniversityBeijing100084China School of Mechanical Engineering and Automation Beihang UniversityBeijing100191China
Accurate and efficient methods for identifying and tracking each animal in a group are needed to study complex behaviors and social *** tracking methods(e.g.,marking each animal with dye or surgically implanting micro... 详细信息
来源: 评论
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection for Large-Scale Problem
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Yang Nan Tianye Shu Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Hypervolume subset selection (HSS) is a hot topic in the evolutionary multi-objective optimization (EMO) community since hypervolume is the most widely-used performance indicator. In the literature, most HSS algorithm...
来源: 评论
How to Find a Large Solution Set to Cover the Entire Pareto Front in Evolutionary Multi-Objective Optimization
How to Find a Large Solution Set to Cover the Entire Pareto ...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Lie Meng Pang Yang Nan Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Recently, it has been pointed out in many studies that the performance of evolutionary multi-objective optimization (EMO) algorithms can be improved by selecting solutions from all examined solutions stored in an unbo...
来源: 评论
Effects of Initialization Methods on the Performance of Surrogate-Based Multiobjective Evolutionary Algorithms
Effects of Initialization Methods on the Performance of Surr...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Jinyuan Zhang Hisao Ishibuchi Linjun He Yang Nan Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, so...
来源: 评论
Ensemble R2-based Hypervolume Contribution Approximation
Ensemble R2-based Hypervolume Contribution Approximation
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Guotong Wu Tianye Shu Yang Nan Ke Shang Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
The hypervolume-based multi-objective evolutionary algorithms (HV-MOEAs) have proven to be highly effective in solving multi-objective optimization problems. However, the computation time of the hypervolume calculatio...
来源: 评论
Normalization in R2-Based Hypervolume and Hypervolume Contribution Approximation
Normalization in R2-Based Hypervolume and Hypervolume Contri...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Guotong Wu Tianye Shu Ke Shang Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
In this paper, we examine the effect of normalization in R2-based hypervolume and hypervolume contribution approximation. The fact is that the region with different scales on objective space brings approximation bias....
来源: 评论
Evidentially Calibrated Source-Free Time-Series Domain Adaptation with Temporal Imputation
arXiv
收藏 引用
arXiv 2024年
作者: Ragab, Mohamed Gong, Peiliang Eldele, Emadeldeen Zhang, Wenyu Wu, Min Foo, Chuan-Sheng Zhang, Daoqiang Li, Xiaoli Chen, Zhenghua Singapore The Key Laboratory of Brain-Machine Intelligence Technology Ministry of Education College of Computer Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing211106 China Singapore138632 Singapore
Source-free domain adaptation (SFDA) aims to adapt a model pre-trained on a labeled source domain to an unlabeled target domain without access to source data, preserving the source domain’s privacy. While SFDA is pre... 详细信息
来源: 评论
Superpixelwise Low-rank Approximation based Partial Label Learning for Hyperspectral Image Classification
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Shujun Zhang, Yu Ding, Yao Hong, Danfeng Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Peng Cheng Laboratory Shenzhen518055 China School of Optical Engineering Xi'an Research Institute of High Technology Xi’an710025 China Key Laboratory of Digital Earth Science Aerospace Information Research Institute Chinese Academy of Sciences Beijing100094 China
Insufficient prior knowledge of a captured hyperspectral image (HSI) scene may lead the experts or the automatic labeling systems to offer incorrect labels or ambiguous labels (i.e., assigning each training sample to ... 详细信息
来源: 评论