咨询与建议

限定检索结果

文献类型

  • 596 篇 期刊文献
  • 335 篇 会议

馆藏范围

  • 931 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 580 篇 工学
    • 362 篇 计算机科学与技术...
    • 301 篇 软件工程
    • 115 篇 生物医学工程(可授...
    • 105 篇 生物工程
    • 103 篇 信息与通信工程
    • 92 篇 控制科学与工程
    • 72 篇 电气工程
    • 64 篇 光学工程
    • 45 篇 电子科学与技术(可...
    • 37 篇 机械工程
    • 27 篇 仪器科学与技术
    • 27 篇 材料科学与工程(可...
    • 25 篇 化学工程与技术
    • 15 篇 建筑学
    • 15 篇 交通运输工程
    • 15 篇 安全科学与工程
  • 409 篇 理学
    • 191 篇 数学
    • 164 篇 生物学
    • 85 篇 物理学
    • 50 篇 统计学(可授理学、...
    • 44 篇 系统科学
    • 27 篇 化学
  • 168 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 77 篇 图书情报与档案管...
    • 28 篇 工商管理
  • 146 篇 医学
    • 126 篇 临床医学
    • 72 篇 基础医学(可授医学...
    • 43 篇 药学(可授医学、理...
    • 16 篇 公共卫生与预防医...
  • 22 篇 法学
    • 20 篇 社会学
  • 21 篇 教育学
  • 13 篇 农学
  • 10 篇 经济学
  • 7 篇 文学
  • 3 篇 艺术学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 28 篇 electroencephalo...
  • 27 篇 feature extracti...
  • 21 篇 deep learning
  • 21 篇 training
  • 21 篇 multiobjective o...
  • 17 篇 neural networks
  • 16 篇 machine learning
  • 14 篇 reinforcement le...
  • 11 篇 task analysis
  • 11 篇 optimization
  • 11 篇 brain-computer i...
  • 11 篇 evolutionary com...
  • 10 篇 deep neural netw...
  • 10 篇 generative adver...
  • 10 篇 brain modeling
  • 10 篇 clustering algor...
  • 9 篇 object detection
  • 9 篇 three-dimensiona...
  • 9 篇 convolution
  • 9 篇 semantics

机构

  • 98 篇 guangdong provin...
  • 34 篇 institute of sci...
  • 33 篇 department of co...
  • 33 篇 nanhu brain-comp...
  • 24 篇 beijing advanced...
  • 23 篇 southern univers...
  • 23 篇 college of compu...
  • 23 篇 research institu...
  • 22 篇 department of co...
  • 16 篇 shanghai key lab...
  • 16 篇 henan key labora...
  • 15 篇 ji hua laborator...
  • 15 篇 guangdong provin...
  • 14 篇 key laboratory o...
  • 14 篇 research center ...
  • 13 篇 shanghai center ...
  • 13 篇 university of ch...
  • 12 篇 the guangdong pr...
  • 12 篇 school of automa...
  • 12 篇 the state key la...

作者

  • 50 篇 ishibuchi hisao
  • 35 篇 yao xin
  • 33 篇 tang ke
  • 22 篇 pang lie meng
  • 21 篇 liu shengcai
  • 20 篇 shang ke
  • 20 篇 nan yang
  • 18 篇 hisao ishibuchi
  • 18 篇 liu jialin
  • 14 篇 shu tianye
  • 14 篇 yang peng
  • 13 篇 jianfeng feng
  • 13 篇 feng jianfeng
  • 13 篇 xin yao
  • 12 篇 cheng ran
  • 12 篇 zhang junping
  • 12 篇 yang nan
  • 11 篇 zhang yangsong
  • 11 篇 pan gang
  • 11 篇 shan hongming

语言

  • 864 篇 英文
  • 50 篇 其他
  • 20 篇 中文
  • 1 篇 法文
检索条件"机构=The Henan Key Laboratory of Brain Science and Brain Computer Interface Technology"
931 条 记 录,以下是371-380 订阅
排序:
Analysis of Partition Methods for Dominated Solution Removal from Large Solution Sets
Analysis of Partition Methods for Dominated Solution Removal...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Tianye Shu Yang Nan Ke Shang Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
In evolutionary multi-objective optimization (EMO), one important issue is to efficiently remove dominated solutions from a large number of solutions examined by an EMO algorithm. An efficient approach to remove domin...
来源: 评论
Controllability analysis of transcriptional regulatory networks for Saccharomyces cerevisiae  44
Controllability analysis of transcriptional regulatory netwo...
收藏 引用
44th Annual Conference of the IEEE Industrial Electronics Society, IECON 2018
作者: Liu, Suling Wang, Pei Xu, Qiong Chen, Aimin Lü, Jinhu School of Mathematics and Statistics Henan University Kaifeng China School of Mathematics and Statistics Institute of Applied Mathematics Laboratory of Data Analysis Technology Henan University Kaifeng China School of Mathematics and Statistics Institute of Applied Mathematics Henan University Kaifeng China School of Automation Science and Electrical Engineering State Key Laboratory of Software Development Environment Beijing Advanced Innovation Center for Big Data Brain Machine Intelligence Beihang University Beijing China
Structural controllability of complex networks has been a research focus in recent years. However, few works considered the structural controllability of biological networks, especially for dynamic biological networks... 详细信息
来源: 评论
DeepNFT: Towards Precise Neurofibrillary Tangle Detection via Improving Multi-scale Feature Fusion and Adversary
DeepNFT: Towards Precise Neurofibrillary Tangle Detection vi...
收藏 引用
2021 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2021
作者: Jiang, Yankai Zhang, Lei Li, Yiming He, Xiangyang Huang, Hanxiao Zhu, Keqing Tao, Yubo Lin, Hai State Key Laboratory of CADCG College of Computer Science and Technology Zhejiang University Hangzhou China Zhejiang University School of Medicine China Brain Bank and Department of Neurology in Second Affiliated Hospital Key Laboratory of Medical Neurobiology of Zhejiang Province Department of Neurobiology Hangzhou China Department of Pathology Zhejiang University School of Medicine Hangzhou China
Detecting neurofibrillary tangles is an important procedure in the assessment of the intensity and distribution pattern of hippocampal tau pathology, which are the principal clinical phenotypes associated with Alzheim... 详细信息
来源: 评论
Noninvasive Tracking of Every Individual in Unmarked Mouse Groups Using Multi-Camera Fusion and Deep Learning
收藏 引用
Neuroscience Bulletin 2023年 第6期39卷 893-910页
作者: Feng Su Yangzhen Wang Mengping Wei Chong Wang Shaoli Wang Lei Yang Jianmin Li Peijiang Yuan Dong-Gen Luo Chen Zhang Department of Neurobiology School of Basic Medical SciencesBeijing Key Laboratory of Neural Regeneration and RepairCapital Medical UniversityBeijing100069China Chinese Institute for Brain Research Beijing102206China State Key Laboratory of Translational Medicine and Innovative Drug Development Nanjing210000China Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China School of Life Sciences Tsinghua UniversityBeijing100084China School of Biological Science and Medical Engineering Beihang UniversityBeijing100191China The Key Laboratory of Developmental Genes and Human Disease Institute of Life SciencesSoutheast UniversityNanjing210096JiangsuChina Institute for Artificial Intelligence the State Key Laboratory of Intelligence Technology and SystemsBeijing National Research Center for Information Science and TechnologyDepartment of Computer Science and TechnologyTsinghua UniversityBeijing100084China School of Mechanical Engineering and Automation Beihang UniversityBeijing100191China
Accurate and efficient methods for identifying and tracking each animal in a group are needed to study complex behaviors and social *** tracking methods(e.g.,marking each animal with dye or surgically implanting micro... 详细信息
来源: 评论
Evolutionary multi-objective optimization algorithm framework with three solution sets
arXiv
收藏 引用
arXiv 2020年
作者: Ishibuchi, Hisao Pang, Lie Meng Shang, Ke Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China
It is assumed in the evolutionary multi-objective optimization (EMO) community that a final solution is selected by a decision maker from a non-dominated solution set obtained by an EMO algorithm. The number of soluti... 详细信息
来源: 评论
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection for Large-Scale Problem
Two-Stage Lazy Greedy Inclusion Hypervolume Subset Selection...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Yang Nan Tianye Shu Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Hypervolume subset selection (HSS) is a hot topic in the evolutionary multi-objective optimization (EMO) community since hypervolume is the most widely-used performance indicator. In the literature, most HSS algorithm...
来源: 评论
How to Find a Large Solution Set to Cover the Entire Pareto Front in Evolutionary Multi-Objective Optimization
How to Find a Large Solution Set to Cover the Entire Pareto ...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Lie Meng Pang Yang Nan Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Recently, it has been pointed out in many studies that the performance of evolutionary multi-objective optimization (EMO) algorithms can be improved by selecting solutions from all examined solutions stored in an unbo...
来源: 评论
Algorithm configurations of MOEA/D with an unbounded external archive
arXiv
收藏 引用
arXiv 2020年
作者: Pang, Lie Meng Ishibuchi, Hisao Shang, Ke Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China
In the evolutionary multi-objective optimization (EMO) community, it is usually assumed that the final population is presented to the decision maker as the result of the execution of an EMO algorithm. Recently, an unb... 详细信息
来源: 评论
Effects of Initialization Methods on the Performance of Surrogate-Based Multiobjective Evolutionary Algorithms
Effects of Initialization Methods on the Performance of Surr...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Jinyuan Zhang Hisao Ishibuchi Linjun He Yang Nan Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
Initialization plays a crucial role in surrogate-based multiobjective evolutionary algorithms (MOEAs) when tackling computationally expensive multiobjective optimization problems. During the initialization process, so...
来源: 评论
Ensemble R2-based Hypervolume Contribution Approximation
Ensemble R2-based Hypervolume Contribution Approximation
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Guotong Wu Tianye Shu Yang Nan Ke Shang Hisao Ishibuchi Department of Computer Science and Engineering Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation Southern University of Science and Technology Shenzhen China
The hypervolume-based multi-objective evolutionary algorithms (HV-MOEAs) have proven to be highly effective in solving multi-objective optimization problems. However, the computation time of the hypervolume calculatio...
来源: 评论